* YAMAHA

DIGITAL

PROGRAMMABLE ALCORITHM SYNTHESIZER

OWNER'S MANUAL

INTRODUCTION

Thank you for choosing the Yamaha DXI Digital Programmable Algorithm Synthesizer. The DXI is a fully digital synthesizer incorporating the state-of-the-art tecnnology including Yamaha's superb FM tone generator system. The DXI offers the highest levels of performance, programmability and sound quality.

Please be sure to read this manual thoroughly before you use your DXI to ensure many hours of trouble-free use.

FEATURES

* Mıcrocomputer-based operation otfers a tremendous range of functions in an easy-to-use system. All functions are selected via light-touch electronic buttons, and data entry is carried out via buttons or a slider control.
* Data is displayed on the LCD or LED graphic displays, making all pertinent parameters visible during programming. LED graphic display in particular offers simultaneous readout of many parameters making it easier to check overall program status.
* 64 (2 channels x 32) voice memory. 256 pre-programmed voices are provided in external ROM memory cartridges $(64$ of which are the same as the voices pre-programmed in the DXl internal memory). Voices from the two voice channels can be used
independently, or combined as needed. * The DXI is also equipped with a 64 voice performance memory which can store combinations of voice and effect (modulation wheel, foot controller, etc.) parameters for easy one-touch selection. A pre-programmed 64 voice ROM cartridge is provided.
${ }_{*}$ Memory data can be stored in optional RAM cartridges, permitting creation of an original voice library.
* Full editing facilities permit alteration of existing voice data. * Totally new voices can be created using the initialize memory function.
* The FM tone generator is a revolutionary system which is totally programmable and permits creating voices with a natural, irregular harmonic structure. Two tone generator channels--A and $B--a r e$ provided. Each features a 6-operator 32-algorithm system. Each operator is fully programmable permitting limitless voice creation.
* A new 8-parameter envelope generator system permits programming complex envelope waveforms for unprecedented versatility. independent envelope generator is provided for each operator, as well as a separate pitch envelope generator.
* The DXl features programable key velocity sensitivity function which enables control of volume and timbre via key pressure. Further, the keyboard has been specially designed to respond to the player's touch just like a high quality acoustic piano. * The keyboard scaling function enables natural volume and timbre scaling, and alteration of the EG response through the keyboard range.
* The DXI provides a rich variety of effects such as pitch bend, portamento/glissando, EG bias and LFO modulation. These can be operated by means of four controllers: a modulation wheel, foot controller, keyboard after-touch response, and a unique breath controller (optional).
* The DXI is equipped with a MIDI interface. This permits control and transfer ot data between the DXI and another MIDI compatible keyboard, MIDI computer, sequencer, or other MIDI equipment.

CAUTONS

* Location

Avoid placing the DXI in the following locations:

* By windows or in direct sunlight.
* By heaters or places subject to extremes of heat or cold.
* Dusty places.
* Pıaces subject to vibration.

* Power

* Make sure that your DXl is properly adjusted to accept the AC mains voltage and frequency in your area. Do not under any circumstances connect the DXI to any other type of power source.
* Remove the AC plug from the socket during thunderstorms.
* Connections
* Read the section in the manual on terminals and connections carefully, and be sure to connect the equipment correctly.
* In order to avoid speaker damage make sure that all power switches to related equipment are OFF before connecting.
* Operating and Transportation
* Do not apply unnecessary force to the switcnes and knobs.
* In order to avoid broken cables and shorts, unplug all connection cables from the socket whenever you move the equipment. Always unplug connectors by gripping the plug, not the cord. Unplug the DXI if you are not planning to use it for some time.
* Warranty Procedures
* Make sure you carry out the warranty procedures at the shop where you purchase your DXI. If the warranty certificate is not filled out properly, you will be required to pay a charge for servicing even though your machine is still within the warranty period.
* Keep this manual and your warranty certificate in a safe place.
* Other Appliances
* Your DXl contains dıgital circuitry. If it is used too close to radios, IVs or related equipment interference may result. Make sure that your DXI is sufficiently separated from other equipment.

CONTENTS

CHAPTER 1 DXI OUTLINE/THF FM VOICF, CENERATOR SYSTEM
4
4
1-1 DXI System Outline 4
1-2 THE FM TONE GENERATOR 4
CHAPTER 2 DXI FEATURES AND FUNCTIONS 6
2-1 The 4 Modes of the DXI 6
2-2 Control Panel (fig. 8) 6
2-3 Connection Terminals 9
CHAPTER 3 PLAV mode/PERFORMANCE MEMORY. . 11
3-1 PERFORMANCE MEMORY \& VOICE MEMOPY 11
3-2 Calling Memory Data 12
3-3 STORE/MOVING MEMORY 14
CHAPTER 4 EDIT mode/VOICE PARAMETEPS 18
4-1 The EDIT Mode 18
4-2 The Voice Parameter Buttons Below the LED Display 21
4-3 PERFORMANCE MEMORY/FUNCTION SECTION VOICE PARAMFTERS 27
CHAPTER 5 FUNCTION MODE/EFFFCTS AND OTHER FUNCTIONS 31
5-1 The 3 function of the FUNCTION mode 31
5-2 The FUNCTION mode control process 31
5-3 PERFORMANCE MEMORY PARAMETFRS 35
5-4 MEMORY MANECEMENT 42
5-5 MIDI INFO. CONTPOL (fiq. 78) 47
CHAPTER 6 STORE MODE/DATA MEMORY STOCK 52
6-1 3 varieties of the smore function 52
6-2 Annlication of STORE ALI 53
6-3 STORE VOICE APPLICATIONS 54
6-4 STORE PERFORMANCE APPLICATION. 55
CHAPTER 7 VOICE INITIALIZE/PROCRAMMINC A NEW VOICE 57
7-1 Programming a voice from the INITIALIZE MEMORV state 57
7-2 ENTERING VOICE PARAMETER 58
7-3 ENTERING THE PERFORMANCE MEMORY PARAMETERS 59
CHAPTER 8 USING THE MIDI TFRMINALS 61
8-1 ABOUT THE MIDI TERMINALS 61
8-2 MIDI SYSTEM CONNECTIONS AND OPERATIONS 62
CHAPTER 9 FM TONE GENERATOR THEORY 67
9-1 Approaching the FM Tone fenerator 67
9-2 FM Tone fenerator Theory 69
CHAPTER 10 GENERAL SPECIFICATIONS 72
CHAPTER 11 BLOCK DIAGRAM 73

DX1 OUTLINETHE FM VOICE GENERATOR SYSTEM

1-1 DX1 System Outline

The block diagram in figure 1 roughly outlines the DXI system. It consists of
four main sections:
(1) CONTROL PANEL
(2) Fin TOIIE GENERATOR
(3) DIGITAL EG
(4) KEYDOARD

The simplicity of the system nas deen made possible because it functions mostly on digital principles. Based on the block diagram in figure l, we'll roughly describe each section.
(1) CONTROL PANEL

Almost all controls are logic control switches. Other features on this remarkably simple panel inclucie a graphic LED display, an alphanumeric LCD display, a few linear controls anc controller wheels.
(2) FU TONE GENERATOR

In addition to pitch, timbre and level programming capability, these sophisticatec tone generators are also capable or generating noise components like those found in natural sounds and acoustic instruments. They offer unprecedented precision and versatility in voice creation.
(3) DIGITAL EG

This system permits programming time-based variations of pitch, timbre and level. Because it is a digital system, the EG curve can be precisely programmed in numeric form. Further, the digital EG has 8 variable parameters permitting exceptionally versatile EG curve generation.
(4) KEYBOARD

This is a 73-key, 32-note polyphonic keyboard with three touch functions: key velocity sensitivity (initial touch), after touch, and key individual after touch. This

Fig. 1. DX1 Digital Synthesizer Design

offers greatly expanded expression capability. Further, the keyboarc offers a precision weighted-return action for the most natural overall keyboara response.

1-2 THE FM TONE GENERATOR

The Yamaha Ff tone generator permits precise control over voice pitch, timbre and level. The following is a incief ciescription of FH tone generator principles. See Chapter 9 for a more technical explanation of Fir tone generator theory.

What is Fil?

Fif stancis for $\operatorname{Frequency~Nodulation,~just~as~}$ it does when used to describe an "FN" station or radic broacast.
The term "modulation" means, basically, to superimpose one signal on top of another signal. In other words, a signal of a given pitch may be used to "modulate" a signal of another pitch. The vibrato effect is an example of a low-frequency signal (the vibrato) modulating a high-frequency signal (the note to which vibratc is applied). In an FH radio broadcast, a "carrier"--an extremely high-frequency radio signal which can be transmitted via the atmosphere--is usea to "carry" the program material. The program material "modulates" the radio-frequency carrier.
In the FM tone generator, the carrier and modulator function as follows:

CARRIER: determines the level and pitch of the soundi.
MODULATOR: determines the timbre of the sound.

Of course, the carrier and modulator
frequencies are much closer together in the FH tone generator than they are in an FM broadicast, and they are both pure sine waves.

The 2 Hair Merits of FM
In an FM broadcast, since the carrier frequency is somewhere around 80 million hertz (cycles) and the music signal which modulates it contairs frequencies which are much lower- -20 Hz to $20,000 \mathrm{~Hz}$, the music signal is basically unchanged by the carrier. If we bring the frequencies of the carrier and modulator much closer together, however, we begin to generate new signal components--harmonics of the modulator and/or carrier and noise components. It is these modulator-carrier characteristics that we take advantage of in the FH tone generator. Its first big benefit is that the FM generator is capable
of closely controlling the pitch, timbre and level of the sound produced without the need for conventional VCO (Voltage Controlled Oscillator--pitch control), VCF (Voltage Controllea Filter--Timbre) or VCA (Voltage Controlled Amplifier--level) elements.
Further, while the conventicnal VCF controls timore by removing certain harmonics from the sound, the FH tone generator works by adding harmonics as required--and where requireci-fior much more sounci control versatility. In fact, the harmonic spectruni of a voice can programmed with total freedom.
Another major benefit of the FH system is that noise components that conventional VCOs are simply incapable of producing can be easily generated. Noise is a very important part of the sounci of any acoustic instrument--not just the instrument's pure tonal harmonics. For example, in a violin there is bowing noise, breath noise in a saxophone sound, or the purely percussive portion of a drum sound. The FM tone generator system permits producing total sound such as these, incorporating both purely tonal and noise spectra. Specifically, random harmonic structures and noise can be produced by setting the ratio of modulator and carrier frequencies so one is not a taultiple of the other, and by greatly increasing the modulation level. Of: course, it is then possikle to use the DXl EG to independently control different portions of the sound.

The $F M$ Tone Generator and Algorithms
The DXI has two FF: tone generator channels--A and B. Each channel has 6 OPERATORS--a total or $12-$ which are the basic Fli voice building blocks. An operator is essentially a sine wave oscillator that can be used either as a modulator or as a carrier. Furthermore, since the DXI is an all-digital instrument, these sine wave oscillators function $u y$ "reading" the sine wave from a digital sine wave memory, rather than by using conventional analog oscillator circuitry, for exceptional precision and stability.
The six operators in each channel can be combineo in many ways, with different configurations anć moculator-to-carrier relationships. Such operator "patterns" are called ALGORITHils. The simplest form of algorithm is a combination of two
operators--one a carrier and one a
Fig. 4. Paralle Carrier Algorithm

The two voices are mixed and output.

Fig. 5. DXI Algorithml

modulator. This combination is shown in fig. 2 below.

Fig. 2. FM Sound Source Basic Algorithm

Modulation Signal $\}$ Audio Signal

Without any mociulation, an operator prociuces a pure sine wave with absolutely no harmonic content other than the fundamental
frequency. When modulation is applied, however, a rather complex waveform with a complex harmonic structure is produced (fig.
3). There are three main ways of
controlling the resultant waveform. They are:

The frequency ratio between modulator and carrier.
Hodulator cutput level.
Feediback.
The DXI uses all three of these control elements to create an unbelievably broad spectrum of natural voices.

Fig. 3. FM Waveform Variation

Waveform before modulation by carrier. (Sine Wave)

Waveform after modulation by carrier. (Complex wave)

The actual algorithms used in the DXI are a little more complex than the one shown above. Carriers may be arranged "side by sicie" as shown in fig. 4, or many modulators may be piled on top of one anotiier to create a "chain" of modulation. Figures 5--7 are examples of actual DXI algorithms. 32 different algorithm patterrs are provided, and can be used independently in channels A and B. The two channels can then be mixed in any way desired to create a range of voices unprecedented in any electronic music synthesizer system.

Fig. 6. DXI Algorithm 18 Fig.7. DXl Algorithm 30

CHAPTER 2

DX1 FEATURES AND FUNCTIONS

Despite of the fact that the DXl has a vast number of functions, its control panel is remarkably simple. This has been made possible by the use of many multi-function switches that change their function according to the number of times they are pressed. This system of providing many functions with the smallest number of switches is similar to that of using an alphanumeric keyboard for inputting commands on a large computer. In this section we will briefly introduce the features and functions of the DXI control panel.

2-1 The 4 modes of the DX1

The DXI has four main modes. These are selected using the MODE selectors. Each mode has its own set of parameters.

PLAY MODE
In this mode, voice and effect data called can be used directly in performance. Although there is no specific switch for this mode, it is the basic mode selected when the three modes described below are all turned OFF. In the play mode, the PERFORHANCE MEMORY/FUNCTION and VOICE MEMORY buttons become the play mode voice selectors.

EDIT MODE

In this mode voice data can be programmed. Data already contained in the voice memory can be edited and changed, or completely new voices can be created simply by inputting the appropriate data. The edit mode takes priority over the play mode.

FUNCTION MODE
In this mode the many effects used during performance can be set. Commands related to memory control and the MIDI terminal are also included in this mode. This mode takes priority over both the play and edit modes.

STORE MODE
In this mode data can be stored in the voice and performance memories. Voice parameters in the EDIT mode can be memorized in the VOICE MEMORY, and function parameters and VOICE MEMORY numbers can be combined and recorded in the PERFORMANCE MEMORY. The store mode takes priority over the play, edit and function modes.

2-2 Control Panel (fig. 8)

The $D X-1$ control panel has the following

Fig. 8. DXI Control Panel

control/function groups:

1. MODE SELECTOR
2. VOICE MEMORY
3. CARTRIDGE SW
4. CARTRIDGE SLOT
5. PERFORMANCE MEMORY/FUNCTION
6. KEY ASSIGN MODE SW
7. LCD DISPLAY
8. VOICE PARAMETER SW
9. LED DISPLAY
10. DATA ENTRY
11. WHEEL CONTROLLER/SLIDER
(1) MODE SELECTORS These selectors are used to call the desired mode. When a mode selector is pressed its indicator lights.

* If more than one mode selector is pressed at one time, the indicators of all the pressed buttons will light. However, more than one mode cannot be selected at the same time.
* The priority of the modes is given below.
(1 STORE/2 FUNCTION/3 EDIT/4 PLAY)

EDIT/COMPARE

This button calls the edit mode. The compare function incorporated in this selector permits comparison of the sound of a voice being edited with that of the original voice. \rightarrow P. 21

* The voice parameter switches arranged beneath the LED display and the PERFORMANCE MEMORY/FUNCTION switches are used to select the voice parameters to be edited, and data is entered using the DATA ENTRY section.
* The VOICE and PERFORHANCE NEMORY selectors are locked during the edit mode, and cannot be changed.

FUNCTION

This calls the function mode.

* The function is determined using the PERFORMANCE MEMORY/FUNCTION switches then data is entered using the DATA ENTRY section.
* If the EDIT/COMPARE switch is either off or flashing during the function mode, different voice memory buttons can be selected.
* Since the performance memory and function mode buttons are integrated, the performance memory cannot be changed while in the function mode.

STORE

This is the mode which permits storage of data in the various memory locations. \rightarrow P. 52 * The VOICE MEMORY and/or PERFORMANCE MEMORY/FUNCTION pcsitions are selected and operation is performed via the DATA ENTRY section.

* The FUNCTION switch, EDIT switch, and VOICE MEMORY and PERFORMANCE MEMORY are locked during the store mode, and will not function until the store mode is disengaged.

(2) VOICE MEMORY

These are the VOICE MEMORY position selectors. Two channels are provided, one each for tone generators A and B, Each channel has 32 memory positions. The bank selectors determine which voice bank is selected, and the voice switches determined which voice within that bank is selected.

* When the CARTRIDGE switch is ON the selectors select the cartridge memory. Positions cannot be re-selected in the edit or store modes. \rightarrow P. 13

(3) CARTRIDGE SWITCHES

These switches select cartridge voices. When pressed the VOICE MEMORY selectors select the corresponding voices within the cartridge.

(4) CAPTRILGE SLOTS

Cartridges are inserted here. ROM cartriciges and RAM cartridges are both. inserted into the same slots.

* When VOICE ROM CARTRIDGEs are inserted, cartridge A and B voices go to the corresponding voice memory channels A and B.
* PERFORI:ANCE ROM CARTRIDGEs should be plugged into the A slot.
* Two DXI VOICE ROM CARTRIDGEs, Two DX7 VOICE ROM CARTRIDGES and one PERFORMANCE MEMORY CARTRIDGE are provided with the DXI.
* VOICE ROA CARTRIDGEs incorporate 2 banks of voices which can be selected with a switch in the cartridge. Select the required bank before inserting the cartriace in the slot.
* The DXI VOICE RON CARTRIDGEs have the same voices as the main unit on sice I, and side II contains completely different data. The DX7 VOICE ROM CARTRIDGEs contain data not contained in the DXI internal mernory on both banks.
* RAM CARTRIDGE features a memory protect switch which prevents accidental erasure of the data in the RAM CARTRIDGE. Be sure to turn memory protect off before attempting to write to a RAM CARTRIDGE.
(5) PERFORI:ANCE MEMORY/FUNCTION
* In the play mode, these are the PERFORR:ANCE MEMORY position selectors which select a memorized voice number and effect combination. 64 PERFORLANCE MEHORY positions are provided. The upper row selects the bank and the lower row selects the memory position. The performance name and voice name are displayed on the LCD display. \rightarrow P. 12
* In the function mode these are the function parameter selectors. The pararieter rame and data are displayed on the LCD display. $\rightarrow p .33$
* In the EDIT mode the upper row 1--8 buttons and lower row 1 and 2 buttons becone the edit parameter selectors. The parameter names and data are displayed on the LCD display in this case also. \rightarrow P. 27
* In the STORE mode these selectors select the performance memory to which the store operation is targeted. \rightarrow p. 52
(6) KEY ASSIGN MODE BUTTONS

These select which tone generator channel will be playable via the keyboard. \rightarrow p. 42

SINGLE
Only the f or E channel may be selected at a
time. In the polyphonic mode the maximum number of notes that can be played simultaneously is 32. In this case outputs A and B both output a monaural signal corresponding to the channel in use.

DUAL
Both channels A and B can be used simultaneously. In the polyphonic mode the maximum number of notes that can be played simultaneously is 16.

SPLIT
This permits splitting the keyboard at any point and having channels A and B applied to the keyboard sections above and below the set split point. In the polyphonic mode the maximum number of output notes is 16 for each channel.
(7) LCD (Liquid Crystal Display)
** In the PLAY mode this display displays the voice name and its memory position (number), or the performance memory name and its memory position.
** In the EDIT mode the parameter rame and data are displayed.
** In the FUNCTION mode the parameter name, the control prompts and data are displayed.
** In the STORE mode the memory position and control prompts are displayed.

(8) VOICE PARAMETER SWITCHES

When the EDIT mode is called voice data is displayed on the LCD display and these switches permit editing of the data.

* Pressing a voice parameter switch selects the corresponding parameter, and data is entered using the DATA ENTRY section.
* Data can also be changed by continuously pressing a voice parameter switch. The data value increases in l-step increases, and when the maximum value is exceeded the display begins from the lowest value again.

(9) LED DISPLAY

This graphically displays parameter data in the EDIT mode. A bar-graph type display shows level information.

* In the EDIT mode, parameters and data being worked on are shown by flashing sections on the display.
(10) DATA ENTRY

In the EDIT, FUNCTION and STORE modes, data entry is performed at this section.

* Data can be input either by using the slider control or $+/-$ button. The slider control permits broad-range data variation, while the +/- button permits fine data control in l-step increments. The +/- switch also functions to turn certain parameters ON or OFF.
* It also serves to answer YES or NO to
control prompts which appear on the LCD display.
(11) WHEEL CONRROLLER/SLIDER

VOLUME
This is the DXI master volume control
BALANCE
This adjusts the volume balance between channels A and B.

PORTAMENTO

This adjusts the portamento time.

* When the FUNCTION mode PORTAMENTO PEDAL. \& KNOD ASSIGIJ is OFF, portamento will not function. \rightarrow P. 36

PITCH

This is the pitch bend wheel.

* This will not function when the FUNCTION mode PITCH BEND RANGE parameter is set to $0, \rightarrow \boldsymbol{P} .36$

MODULATION
This controls LFO modulation. That is, the depth of vibrato, tremolo and wow effects.

* When the FUNCTIOH mode KOD WHEEL ASSIGIJ is set to EBC (EG BIAS CONTROL) this functions as a volume or brilliance control. \rightarrow P. 38
* Hodulation will not function when the EDIT mode AMPLITUDE MODULATION SENS. parameter is set to 0 , and the PITCH MODULATION SENS. parameter is set to $0 . \rightarrow$ P. 27
* This will not function when the FUNCTION mode MOD WHEEL SENSITIVITY parameter is set to 0 or when the MOD WHEEL ASSIGNs are all OFF. \rightarrow P. 38

2-3 Connection Terminals

The following types of connection terminals pre provided:

1. AUDIO OUTPUT
2. CONTROL CONNECTOR
3. HIDI CONNECTOR

Please connect the power cord, amplifier, peripheral equipment and accessories correctly, as shown ir the illustration. The connector terminals are provided in two locations: on the rear panel (fig. 9a), and to the lower left of the keyboard (fig. 9b).
(1) AUDIO OUSPUT

OUTPUT (fig. 25a)
Audio outputs A, B and P are jrovided. Both unbalanced phone jack and balanced XLR type connectors are provided for each output, for a total of 6 audio output connectors.

A
This is the output for tone generator
output channel A (memory A). However, when the KEY ASSIGN $: O D E$ is set to single, either channel A or B, whichever is in use, will be simultaneously output from this jack.

B
This is the output for tone generator output channel B (memory B). However, when the KEY ASSIGIN RODE is set to single, either channel A or B, whichever is in use, will be simultaneously output from this jack.

P (PROGRAM)

This output provides a monaural mix of channels A and B. It is normally ON. The FUNCTION mode PROGRAM OUTPUT ASSIGM function can be usedi to independently turn channels A and B on or off as required for this output. \rightarrow P. 37

* The unbalanced phone jack outputs are for connection to reproduction ecuipment with unbalanced type inputs. In order to appreciate the extremely broad dynamic range of the DXI we recommend the use of a high-performance keyboard amplifier or integrated $P A$ amplifier/speaker system.
* The balanced XLR type connectors are intended mainly for use in professional applications where noise must be kept to an absolute minimum. These terminals should be used in sound reinforcement and recording situations.
* The output level at outputs A, B and P is controlled by the FUNCTION mode OUTPUT LEVEL ATTENUATE parameter. If the OUTPUT LEVEL ATTENUATE parameter is set to 0 , no sound will be output.

PHONES (fig. 9b)
This jack accepts virtually any standard pair of headphones. It outputs a mono mix of the channel A and B signals.

PHONE VOLUME (fig. 9b)
This controls the level of the headphones. The PHONES volume control controls headphone volume independently from the main volume slider control.
(2) CONTROL CONNECTORS

VOLUHE (fig. 9a)
This connector permits foot control of volume level. An FC-3A foot controller can be connected here.

* In this case the volume slider control should be set to its maximum setting.
l:ODULATION (fig. 9a)
This connector permits foot control of the depth of LFO modulation (vibrato, tremolo, wow) and EG bias (volunte, brilliance). An FC-3A foot controller can be connected here.
* The foot controller will not function
if the EDIT mode AHPL. liODULATION and PITCII : O DULhTIOA SENS. parameters are set to 0. \rightarrow P. 27
* The foot controller will not function if the FUNCTIOH mode FOOT CON'i SEHSITIVITY pararieter is set to 0 anci the FOOT CONT ASSIGis are all OFF. \rightarrow P. 38 SUSTAIN (fig. 9a)
This permits 01//CFF contrcl cf the sustain function by connecting an $\mathrm{FC}-4$ or $\mathrm{FC}-5$ footswitch.
* The footswitch will not functicn if the FUNCTIO: mode SUSTAII PEDAL ASSIGN is Off. \rightarrow P. 37

PORTAMEMTO (fig. 9a)
This connector permits connection of an FC-4 or $\mathrm{FC}-5 \mathrm{fcotswitch}$ to turr. the portamento effect Oin or OFF.

* The footswitch will not functicn if the FUNCTION mode PORTAMENTO TIIE parameter is set to 0 , or the E , DAL $i S S$ IGI: parameter is turned OFF. \rightarrow P. 37

BREATH CONMROLLER (fig. 9b)
A BC-1 breath controller can be connecteo here for wreath contrcl of LFO moculation or EG Dias.

* The breath contrcller will not function if the EDIT mode AHPLITUDE HODULATION and PITCI lODULiTION SENS. parameters are set to 0. \rightarrow P. 27
* The breatr. controller will not function
if the FUNCTION mode BRTH CO:T. SENSITIVITY paraneter is set to 0 anu the BRTH COHT. ASSIGHS are all OFF. \rightarrow P. 39
(3) MIEI CONNECTOR (fig. 9a)

MIDI stanas for Husical Instrument Digital Interface. This interface permits transmission and reception of digital data for control purposes. The iiIEI terminal can be connected to the YAHAHA KYI REIIOTE KEYSOARD, any otreer keyboarc with a iIILI terminal, or a personal computer system. A nild cable must be used. \rightarrow P. 6 /P. 72

IN

This is an input terminal which receives data from another instrunient or computer. The KXI REIOTE KEYBOARD is also connectea here.

OUT
This is the output for the DXI digital control signals. The DXl can be used to control other instruments, or Exl voice or performance data can be read into an exterrial computer.

THRU

This outputs the same data as received at the In terminals, permitting chaining of more than two instruments, computers, sequencers or other iIIDI equipment.

Fig. 9. Connection Terminals

In the PLAY mode, data already in the memory is used for performance. In this section we'll describe how to call out the required voice for performance, and how memory positions can be changed without altering the voice or performance data.

3-1 PERFORMANCE MEMORY \& VOICE MEMORY

What is PERFORMANCE MEMORY?
In the DXI the two channels of internal VOICE MEHORY or external cartridge VOICE MEMORY are combined with the FUNCTION mode
ffects to form the complete performance oices. The PERFORMANCE MEMORY is a memory in which the VOICE HEHORY numbers are combined with effects and stored. Channel A/B combinations and the addition of effects can be freely set up and stored in the PERFORMANCE HENORY. In the PLAY mode complete voices can be easily selected using the PERFORNANCE MENORY switches. \rightarrow P. 12

* When the DXI is initially shipped, its PERFORMANCE MEMORY contains 64 combinations pre-programmed at the Yamaha factory, permitting immediate performance when the instrument is received. The PERFORHANCE MEMORY banks l--4 hold the internal voice memory, and banks 5--8 select the DXI VOICE ROM cartridge side II memory.
* Voice and effect combinations are stored in the PERFORMANCE MEMORY as a number. The actual voice data (the EDIT mode parameters) are not memorized.
* The internal RAM (Random Access Hemory) VOICE MEMORY can be used to store all EDIT mode parameters. When the instrument is initially shipped, the VOICE MEMORY contains 32 voices in each channel, A and $B, f o r$ a total of 64 voices.
* The 5 ROM (Read Only Memory) cartridges provided contain original Yamaha voices and effect data.
* The two DXI VOICE ROM CARTRIDGEs each contain 64 voices for a total of 128 voices. Each cartridge has two sides: I and II. The I/II switch is used to select the desired side. Side I contains the same voices as are initially stored in the instrument's internal memory, and side II contains different voices. Be sure to switch to the desired side before plugging a cartridge into the DXI. \rightarrow P. 13
* The two DX7 VOICE ROM CARTRIDGEs provided also contain 64 voices each for a total of 128 voices.
* The PERFORIIANCE ROM CARTRIDGE contains the same 64 effect "settings" as the

DXI internal PERFORMANCE MEMORY. When this cartridge is inserted into the DXI, the data it contains is called into the internal memory, combined with the desired voice data and used for performance.

* Up to 32 original voices (voice parameters) or 64 original effects (function parameters) can be stored in the RAM cartridges. When a RAM cartridge is plugged into the DXI, original data can be freely called from it.
* The RAM cartridges are initially shipped set up with the VOICE MEMORY (voice parameter) format. To use the RAM cartridge for PERFORMANCE MEIMORY storage (function parameters), use the FUNCTION mode CHANGE CART. FORMAT \rightarrow P. 46 function.

The BUFFER

* The buffer is a special separate memory into which DXI data is called from memory for performance or editing. A buffer is provided for the PERFORMANCE MEMORY and the VOICE MEMORY. When a memory number is selected, the data corresponding to that memory number is read into the buffer (fig. 10).
* In the PLAY mode data read into the VOICE EDIT BUFFER and PERFORMANCE EDIT BUFFER is used as is for performance.
* In the EDIT mode VOICE MEMORY data is read into the VOICE EDIT BUFFER for editing.

Fig. 10. Buffer Circuitry
VOICE YEMORY

* In the FUNCTION mode PERFORLANCE MEMORY effect data is read into the PERFORHANCE EDIT BUFFER for editing.
* In the STORE mode, data in the VOICE EDIT BUFFER or PERFORI:ANCE EDIT BUFFER is stored or copied into the VOICE MEMORY or PERFORNANCE MEMORY.
* In the DXI the memory backup system also provides backup power to the buffer data. When the DXI power is turned OFF, the basic data which was being used at the time is held in memory, and is available immediately power is turned back on.

3-2 Calling Memory Data

(1) Calling the DXI PERFORMANCE MEMORY (fig. 11)

With the PERFORHANCE MEMORY it is possible to call out voice data and effect data simultaneously. At the same time the effect data is called into the PERFORMANCE EDIT BUFFER, the selected voice number data is called into the VOICE EDIT BUFFER.
(a) Turn all NODE selectors (EDIT, FUNCTION, STORE) OFF.

* It cioes not matter if the EDIT switch is flashing at this time.
(b) Insert two VOICE MEMORY CARTRIDGES into the DXI.
(c) Using the upper row of 8 bank selectors in the PERFORMANCE HEHORY/FUNCTION section, select the desired bank number, and select the desired voice + effect with the lower row of 8 buttons. In this way a total sound, incorporating the voice data and effects, is called.
* As shipped, banks 1--4 contain the internal DXI VOICE MEMORY, and banks 5--8 contain the cartricge voice data.
(d) The LCD display displays the performance name as "PERFORMANCE MEMORY \#1-1 **XXXX**", or the voice name as "INT Al-1 YYYY POLY SRC=0 INT Bl-1 ZZZZ POLY SRC=0".
* The "\#l-1" in the performance name display is the memory number, and XxXX is the performance name (fig. 12).
* In the voice name display the upper and lower rows display the channel A and B voice names, respectively. "INT Al-1" and "INT Bl-1" are the memory numbers, while "YYYY" and "ZZZZ" are the voice names. The data following "POLY" are
function parameters that need to be checked for performance (fig. 13). \rightarrow P. 35
* The voice name and performance name display can be switched by pressing the bank selectors.
* When the KEY ASSIGN HODE is set to SINGLE, the voice name displayed is either that of channel A or B depending on which is in use.
* If a PERFORMANCE MEMORY CARTRIDGE (i.e. a cartridge formatted for PERFORMANCE MEMORY) is inserted in the DXI, selecting banks 5--8 results in a momentary "**ERROR** Cartridge format conflict!" message, and the voice data will be called from the internal VOICE MEMORY, banks 1--4. In this case go back to step (b) above and repeat the process correctly.

Fig. 12. Method of Indicating Performance Name

Performance Name
Fig. 13. Method of Indicating Voice Name Memory
Number Voice Name Function Data

(2) Calling the internal VOICE MEMORY (fig. 14)

In the PLAY mode it is possible to use the DXI VOICE MEMORY switches to directly call VOICE MEMORY data into the VOICE EDIT BUFFER without calling a PERFORMANCE MEMORY (in which the voice number is combined with effect data) and add effects as required while playing.
(a) Turn all MODE selectors OFF.
(b) Use the bank select switches in the VOICE MEMORY switch group to select the desired banks for channels A and B.

* If thie KEY ASSIGN MODE is set to SINGLE then only channel A or channel B, whichever is in use, needs to be set.
(c) Then, using the VOICE MEMORY voice switches, select the desired voice number. This causes the selected VOICE MEMORY data to be called into the VOICE EDIT BUFFER.

Fig. 11. Calling Internal Performance Memory

(d) Displays change in voice and performance names when lighted bank switch is pressed.

回

(b)Place cartridges ${ }_{\text {in cartridge }}$ slot.

(a)Mode selectors (edit, function, store) all off.

Select side cartridge of to be used -(when using ROM cartridge).

* The selected PERFORMANCE HEMORY data will be effective with the voice data called until the FUNCTION mode is used to reset the perforance memory data.
(d) The voice name display consists of the name of the voice called. The "INT" portion of the display indicates that the internal memory is selected.
* The performance name will not change even if the VOICE MEMORY buttons are pressed.
(3) Calling a cartridge VOICE MEMORY

It is also possible to use the DXI VOICE MEHORY switches to directly call VOICE MEMORY CARTRIDGE data into the VOICE EDIT BUFFER for performance. In particular this process is suited for calling voice data from the DX7 VOICE ROM CARTRIDGEs.
(a) Turn all MODE selectors OFF.
(b) In the case of a ROM cartridge set the cartrdge bank selector switch before inserting the cartridge.
(c) Insert the cartridge into the cartridge slot.
(d) Press the CARTRIDGE switch to initialize the cartridge access mode.

* If the CARTRIDGE switch is pressed without inserting a cartridge the LCD display will show "**ERROR** Cartridge not ready!". In this case go back to step (c) and properly insert the cartridge.
* If a PERFORNANCE NEMORY CARTRIDGE (a cartridge formatted for PERFORMANCE MEMORY) is inserted, the "**ERROR** Cartridge format conflict!n message will be displayed. In this case the data originally in the buffer will not
be affected. Go back to step (c) and insert the correct cartridge.
(e) Using the VOICE MEMORY BANK switches select the desired bank.
* If the KEY ASSIGN MODE switch is set to SINGLE, then only channel A or B, whichever is in use, needs to be set.
(f) Using the VOICE MEMORY voice switches select the desired voice number. This causes the selected cartridge voice number to be called into the VOICE EDIT BUFFER ready for performance.
* The effects are set up according to the currently selected PERFORMANCE MEMORY unless the FUNCTION mode is used to reset the PERFORMANCE MEMORY parameters.
(g) The voice name display displays the name of the voice called from the catridge.
* The "EXT" portion of the display indicates that the external cartridge memory is being used.
(4) Calling a cartridge PERFORMANCE MEMORY (fig. 16)

It is possible to call PERFORMANCE MEMORY CARTRIDGE data into the PERFORMANCE EDIT BUFFER and call internal VOICE MEMORY data into the VOICE EDIT BUFFER, combining the two for performance.

* The method for calling data from the PERFORMANCE MEMORY CARTRIDGE is different from that for calling data from a VOICE MEMORY CARTRIDGE, so care should be taken to follow the correct procedure.
(a) Turn all HODE selectors (EDIT, FUNCTION, STORE) OFF.

Fig. 14. Calling Main Unit Voice Memory

Fig. 15. Calling Cartridge Voice Memory

(b) Insert the PERFORI:ANCE MEMORY CARTRIDGE into cartridge slot A.

* The cartridge B slot cannot be used.
* If the PERFORMANCE HEMORY CARTRIDGE is inserted into the E slot, the "**ERROR** Cartridge not ready!" message will be displayed, when the following operations are performed.
(c) Press Cartridge switch A while holding down any one of the PERFORNANCE MEMORY/FUNCTION section buttons. This initiates acces to the PERFORNAHCE MEHORY CARTRIDGE.
* When the PERFORMANCE MEMORY CARTRIDGE has been accessed, the last section of the upper row of the performance name display will read "<<CARTRIDGE>>".
* If a perforlannce memory switch is not held, or it is released before the CARTRIDGE button is pressed, or a VOICE MEMORY CARTRIDGE is inserted instead of a PERFORMANCE MEMORY CARTRIDGE, the ***ERRROR** Cartricige format conflict!" message will be displayed, and the desired data will not be read.
(d) Then by using the PERFORMANCE MEMORY bank and PERFORMANCE \& VOICE switches, the desired effect data can be called into the PERFORMANCE EDIT BUFFER.
* Only cartricige data which is called into the PERFORMANCE EDIT BUFFER can be used. Once the cartridge is removed from the cartridge slot, all other PERFORHANCE IIEMORY positions other than the one that was called into the PERFORMANCE EDIT BUFFER can no longer be used. Further, if the CARTRIDGE switch is turned OFF then the internal PERFORMANCE MEMORY will be called into the PERFORMANCE EDIT BUFFER and the cartridge data will be lost.
* If the effect data in the PERFORMANCE EDIT BUFFER needs to be saved, use the store performance function. \rightarrow P. 53
* In order to use all the PERFORMANCE MEMORY CARTRIDGE data in the internal memory, use the load function. \rightarrow p. 46
* Since the PERFORMANCE ROM CARTRIDGE supplied with the unit contains the same data as the internal PERFORMANCE MEMORY at the time of shipping, only banks l--4 can be used. VOICE NEHORY CARTRIDGE data is set for banks 5--8, however, since a VOICE MEMORY

CARTRIDGE cannot be inserted, the interral VOICE HEMORY data is automatically used.
(e) The performance name and voice name are displayed on the LCD display each time the bank switches are pressed. The performance name display is
"ferforliance memory \#l-1 <<CARTRIDGE>> **XXXX**".

* When the supplied PERFORMANCE MEMORY ROM cartridge is used and one of the banks 5--8 is selected, "Cartridge format conflict!" will be displayed momentarily before the performance name. As for the voice name, the lower display row will read "**ERROR** Cartridge not ready!". This indicates that banks 5--8 are set up to use the VOICE MEMORY CARTRIDGE data.
* When it is necessary to change the internal VOICE MEMORY data use the VOICE MEMORY and bank switches to select the desired voice data.
* Internal PERFORMANCE MEMORY data cannot be called during PERFORMANCE MEMORY CARTRIDGE access. The cartridge switch must be turned OFF in order to call the internal PERFORMANCE MEMORY.
* If the PERFORHANCE MEMORY CARTRIDGE is removed while it is being accessed, and the internal PERFORNANCE MEMORY is selected, an error will result and data may be lost.

3-3 STORE/MOVING MEMORY

The DXI permits changing the positions of the PERFORMANCE MEMORY and VOICE MEMORY. The combined preset voices in channels A and B can be selected and re-stored in the PERFORMANCE MEMORY as required.

* The memory protect function is automatically turned on when the DXl power is turned on in order to prevent accidental erasure of the internal memory. The memory protect function must be turned OFF in order to change locations of either the PERFORMANCE or VOICE MEMORY.
* When perforiaince or voice mehory is moved to a new position, the data that was originally in that position is erased. The position from which the data has been moved, however, still contains the original data. To

Fig. 16. Calling Cartridge Performance Memory
(e)

prevent the loss of voice data, be sure to save important voices in an external RAM cartridge. \rightarrow P. 45
(1) Moving Internal PERFORMANCE MEMORY Data (Fig. 17)
(a) In order to turn OFF the memory protect function, press the FUNCTION switch to enter the FUNCTION mode.
(b) Press button 6 in the lower row of the PERFORMANCE MEMORY/FUNCTION group, using the memory management function to call the PROTECT MEMORY WRITE function.
(c) The LCD display will show "Internal memory write protect $\mathrm{ON}^{\prime \prime}$. Press the DATA ENTRY section NO switch, and the display will read "Internal memory write protect OFF", indicating that the write protect function has been turned OFF. Then exit the FUNCTION mode and return to the PLAY mode.
(d) Select the PERFORMANCE MEMORY position to which you wish to move the data.
(e) Select the desired A/B channel VOICE MEMORY combination.
(f) Use the STORE switch to switch to the STORE mode. When this is done, the "STORE ALL FROM >> CURRENT EDITING TO >> CURRENT SELECTED" message will be displayed.

* The STORE ALL mode permits simultaneous writing to all the internal PERFORMANCE MEMORY and VOICE MEMORY positions. \rightarrow P. 53
(g) Press the DATA ENTRY section YES switch to begin the store operation. The data combination selected is automatically stored in the PERFORHANCE MEMORY.
* If the memory protect function has not been turned off prior to the above operations, the n**ERROR** W-protected" message will be displayed, and store will not be possible. In this case go back to step (a).
(2) Moving VOICE MEMORY Data (fig. 18)
(a) Switch to the FUNCTION mode in order to turn off the memory protect function.
(b) Call the PROTECT MEMORY WRITE function.
(c) After pressing the DATA ENTRY section NO button, return to the PLAY mode.
(d) In order to move voices between the internal memory and a cartridge memory, or to change voice positions within a cartridge, make sure the appropriate cartridge is inserted in the cartridge slot.
* To move voices from the cartridge to the internal memory (single load) press the CARTRIDGE switch.
* To move voices from the internal memory to a RAM cartridge (single save) make sure the cartridge memory protect switch is OFF, that the cartridge is properly inserted, and that the CARTRIDGE switch is not pressed.
* To change the position of voices within a RAM cartridge, make sure the cartridge memory protect switch is OFF, the cartridge is properly inserted and the CARTRIDGE switch is pressed.
* It is not possible to store within a ROM cartridge.
* A RAM cartridge formatted f or VOICE MEMORY (=00) must be used to store

Fig. 17. Shifting and Combining Internal Performance Memory Data

(e)Specify A / B channel combinations.

(d)Select memory position.

voice data. A cartridge formatted for performance data (=01) cannot be used.
(e) Using the VOICE MEMORY switches select the voice that you wish to change the position of.
(f) Switch to the STORE mode, and in answer to the LCD display prompt, press the DATA ENTRY section NO button.
(g) The display will read "STORE VOICE FROM >> INT Al-1 XXXX TO >> INT A1-1 XXXX", indicating that VOICE HEMORY position change is now possible.

* The store voice function works only to store VOICE MEMORY data. \rightarrow P. 53
*On the display, the "INT Al-1" is VOICE MEMORY position and "XXXX" is the voice name.
* Using the STORE VOICE function it is possible to store voices in only one channel at a time. In order to change positions in both channels A and B, go back to step (d) after storing one channel and repeat the procedure for the other channel.
(h) After using the VOICE MEMORY bank and voice switches to set the position to which you wish to move a voice, the data following the "TO" portion of the display will show the selected position.
* To move data from a cartridge to the internal memory (single load) turn off cartridge access using the CARTRIDGE switch before selecting the position in the internal memory to which the data is to be moved.
* To move data from the internal memory to a RAM cartridge (single save) turn on cartridge access using the CARTRIDGE switch before selecting the position in the cartridge to which the data is to be moved.
* If a PERFORMANCE MEMORY CARTRIDGE is inserted, the "**ERROR** Cartridge format conflict!" message will be
displayed after the CARTRIDGE switch is pressed.
(i) Press the data entry Yes key to begin the actual store operation. This completes the voice move process.
(3) MOVING PERFORMANCE MEMORY (fig. 19)
(a) Enter the FUNCTION mode in order to turn off the memory protect function.
(b) Call the PROTECT MEMORY WRITE function.
(c) Press the DATA ENTRY NO key then return to the PLAY mode.
(d) To move data between the internal memory and cartridge memory, or within a cartridge, insert the appropriate PERFORMANCE MEMORY CARTRIDGE into cartridge slot A.
* In order to move data from a cartridge into the internal memory (single load) press CARTRIDGE switch A while holding down the appropriate PERFORMANCE MEMORY/FUNCTION switch. This initiates cartridge access. If the PERFORMANCE MEMORY/FUNCTION switch is not pressed or it is released before the CARTRIDGE switch is pressed, the DXI expects a VOICE MEMORY CARTRIDGE operation and an error results. In this case the LCD display will read "**ERROR** Cartridge format conflict!".
* To move data from the internal memory to an external RAM cartridge (single save) turn the catridge memory protect switch OFF, insert the cartridge into its slot, and make sure the CARTRIDGE switch is off.
* To move data within a RAM cartridge, turn the cartridge memory protect switch OFF, insert the cartridge, then press CARTRIDGE switch A while holding the appropriate PERFORMANCE MEMORY/FUNCTION switch to initiate cartridge access. If the PERFORMANCE

Fig. 18. Moving the Voice Memory
(B)

(e)Specify voice of position to be cnanged.
(6)

(e)
(h)

\uparrow

(b)

MEMORY/FUNCTION switch is not pressed, or it is released before the CARTRIDGE switch is pressed, the DXI expects a VOICE MEMORY CARTRIDGE access operation, resultig in an error. In this case the LCD display will read "**ERROR** Cartridge format conflict! ${ }^{n}$.

* If the cartridge is inserted into cartridge slot B, the LCD diplay will read "**ERROR** Cartridge not ready!".
* The "**ERROR*** Cartridge format conflict!" message will also appear if a cartridge which has been formatted for VOICE HEMORY $(=00)$ is inserted instead of one formatted for PERFORMANCE MEMORY.
(e) Use the PERFORMANCE MEMORY/FUNCTION switches to select the voice you wish to move.
(f) Switch to the STORE mode.
(g) Press DATA ENTRY NO button twice.
(h) The display will now read "STORE PERFORMANCE FROM \gg CURRENT XXXX TO \gg INT Pl-l XXXX", indicating that it is now possible to change PERFORMANCE MEMORY position.
* The STORE PERFORMANCE function can only be used to store PERFORMANCE MEMORY data. \rightarrow P. 53
* The "INT Pl-l" portion of the display indicates the PERFORMANCE MEMORY position, and "XXXX" is the performance name.
(i) Using the PERFORMANCE MEMORY/FUNCTION switches, select the position to which you wish to move the data. The selected position will be displayed on the LCD display following the "TO"
portion.
* To move data from a cartridge to the internal memory (single load) turn off cartridge access using the CARTRIDGE switch and select the position to which you wish to move the data.
* To move data from the internal memory to an external RAM cartridge press the CARTRIDGE switch to enable access from the internal memory to the cartridge, and select the position to which you wish to move the data.
* When attempting to move internal data to a RAM cartridage, if a cartridge formtted for VOICE MEMORY $(=00)$ is inserted instead of one formatted for PERFORMANCE MEMORY ($=01$) the
"**ERROR** Cartridge format conflict!" message will be displayed when the CARTRIDGE switch is pressed. Be sure to use a cartridge which has been formated for PERFORMANCE MEMORY (format $=01$) using the FUNCTION mode CHANGE CART. FORMAT function. \rightarrow P. 46
(j) Press the DATA ENTRY section YES button to begin the store operation. This completes the memory move process.
* If the memory protect function is not turned off prior to the above operations, the "**ERROR** W-protected!" message will be displayed. In this case go back to step (a) and repeat the procedure.
* When moving internal data to a cartridge, or when moving data within a cartridage, be sure to turn the cartridge memory protect switch back ON after the operation.

Fig. 19. Moving Performance Memory

(e)Specify voice of position to be changed.

(a)(c)

In the EDIT mode, the VOICE MEMORY voice parameter data can be read into the VOICE EDIT BUFFER and edited. The vast number of parameters that can be edited permits extremely broad-ranging voice creation. After editing, the new data can be re-stored in the VOICE MEMORY.

4-1 The EDIT mode

(1) The EDIT process

In the EDIT mode, the many voice parameters in the VOICE MEMORY are read into a buffer and edited. Since the DXI PERFORMANCE HEMORY settings are a part of the voice created, the PERFORHANCE HEMORY will also be involved in the editing process. The following two variations on the editing process are possible:
(I) The VOICE MENORY for a specific voice is altered without changing the PERFORMANCE MEMORY.
(II) Both the edited VOICE MEMORY and PERFORMANCE MEMORY are re-stored as a new voice.

```
* I:
```

Editing the VOICE MEMORY without changing the PERFORMANCE MEMORY.
EDIT target selection = PERFORMANCE MEMORY selection \Rightarrow
Switch to EDIT mode \Rightarrow
Set data \Rightarrow
Store EDIT data $=$ replace VOICE MEMORY.

* II:

Re-storing both the edited VOICE MEMORY and the PERFORMANCE MEMORY as a new voice.
EDIT target selection $=$ VOICE MEMORY selection \Rightarrow
Switch to EDIT mode \Rightarrow
Set data \Rightarrow
Store EDIT data $=$ Set new VOICE MEMORY and PERFORMANCE MEMORY.
(2) EDIT mode selection/Loading the buffer

* I: PERFORMANCE MEMORY selection (fig. 20)

This is for the case in which the VOICE MEMORY data is edited and re-stored while the PERFORMANCE MEMORY is left unchanged.
(a) Turn all mode selectors (EDIT, FUNCTION, STORE) OFF.

* It does not matter if the EDIT switch is flashing.
* To edit RAM CARTRIDGE VOICEs, first turn the cartridge memory protect OFF, then insert the cartricige into the cartridge
slot.
* After editing data from a ROM cartridge, the new voice can not be written back into the same cartridge.
(b) Select the PERFORMANCE MEMORY position to be edited.
* The PERFORMANCE MEMORY can not be re-selected once the EDIT mode is entered.
* II: VOICE MEMORY selection (fig. 21)

This is for the case in which both the edited VOICE MEMORY and PERFORMANCE HEMORY are re-stored as a new voice.
(a) Turn all mode selectors (EDIT, FUNCTION, STORE) OFF.
*It does not matter if the EDIT switch is flashing.

* To edit ROM cartridge voice data, first set the switch on the cartridge to the appropriate bank, insert the cartridge in the cartridge slot and press the CARTRIDGE switch.
* To edit RAM cartridge voice data and store the results in the same cartridge, first turn the cartridge MEMORY PROTECT switch OFF, insert the cartridge into the cartridge slot, then press the CARTRIDGE switch.
* To edit RAM cartridge voice data and store the results in the internal memory, insert the cartridge into the cartridge slot with the MEMORY PROTECT switch ON, then press the CARTRIDGE switch.
* If a PERFORMANCE MEMORY CARTRIDGE is inserted, the error message n**ERROR** Cartridge format conflict" will be displayed when the CARTRIDGE switch is pressed.
(b) Select the VOICE MEMORY to be edited.
* The selected VOICE MEMORY can not be changed once the EDIT mode has been entered.
Fig. 20. Selecting Performance Memory

Fig. 2l. Selecting Voice Memory

(3) Switching to the EDIT mode and Entering Data (Fig. 22)
(c) Enter the EDIT mode using the EDIT/COMPARE switch. This makes it possible to alter the data in the EDIT BUFFER.
(d) The VOICE HEMORY channel will automatically be selected, and the target EDIT voice inciicator will flash.

* If the KEY ASSIGN HODE switch is set to DUaL, sound will be output from both channels A and B. In order to monitcr only the target EDIT voice, set the BALANCE slide control all the way to the corresponcing channel.
(e) The LED and LCD displays display the data for the tarcet voice.
* The leftmost operator select switch determines which individual operator data is displayed.
* The LED display displays the data for the parameter shown below it.
* The LCD display shows the data of parameter selected by the PERFORMANCE MEHORY/FUNCTION switch.
(f) Select the parameter to be edited using the row of voice parameter switches below the LED display, or the PERFORLALCE IHEHORY/FUNCTION switches.
* The voice parameter switches include most of the Fi tone generator and operator functions that are essential for voice creation. \rightarrow P. 21
* The PERFORAANCE HEHORY/FUNCTION switches include LFO modulation-related effects that affect all operators simultaneoulsy. \rightarrow P. 27
* Envelcpe generator voice parameter fil is automatically selected. Simply press the appropriate switch to select another parameter.
(g) Set the ciesired data value using the DATA ENTRY section.
* Data can also be set by continuously pressing the selected (flashing)

Fig. 22. Switching to Edit Mode and Entering Data

to monitor the individual voice in dual mode.

(d)Voice selected for editing flashes.

PARAMETER switch.

* Use the COMPARE switch to compare the sound of the edited data with the sound of the original data. \rightarrow P. 21
(h) To set the parameters for each operator, use the OPERATOR SELECT switches to select the operator to be worked on. \rightarrow P. 21
* Using the OPERATOR ON/OFF switches it is possible to concentrate on a single operator, permitting extremely fine sound control. \rightarrow P. 22
(i) After $\in d i t i n g$ on one channel has been completed, switch over to the other channel and perform any necessary editing on that channel. Either channel can be selected by pressing a bank or voice switch of the channel you wish to select.
* Also set the balance slicier all the way to the appropriate channel.

(4) Storing Edit Data

In order to store edit datá, a store operation must be performed. Two processes are possible: (I) Storing data without changing the memory position, and (II), storing data in a new VOICE HEMORY or PERFORNANCE MEMORY position.

* Each time power to the DXI is turned on, the internal memory protect system is activated in order to prevent accidental memory erasure. This function must be turned off in order to perform a store operation.
* When a store operation is performed, data originally in the memory to which the store is performed will be erased. Data which needs to be saved should therefore be stored in an external RAM cartridge. \rightarrow P. 45
* In order to store edit data on an external cartridge, a cartridge formatted for VOICE minORY storage must be used. A catridge formtted for PERFORMANCE HEHORY cannot be used.

Parameter switch

(i)Edit another channel voice by pressing the voice or bank switch to change channel.

* I: Replacing an Original VOICE HENORY (fig. 23)

In order to re-store edited data in the original memory location, use the STORE ALL function (the VOICE HEHORY and PERFORI:ANCE MEMORY are simultaneoulsy re-stored in their original locations).

* Using the STORE ALL function it is not possible to move data to another memory location, move data from one channel to another, or move data from the internal memory to an external cartridge.
* The STORE ALL function makes it possible to store internal VOICE MEMORY data back into the same interral memory location, or to store cartridge memory data back into the same cartricige memory location. \rightarrow p. 53
(j) In orcer to defeat the memory protect function, switch to the FUNCTION mode.
(k) Call the protect memory write function.
(1) When the LCD display reads "Interral memory write protect $O N^{\prime \prime}$, press the DP.TA ENTRY NO key, causing the display to read "Internal memory write protect OFF". This defeats the memory protect function.
* If you attempt a store operation with the memory write protect function ON, the "**ERROR** :V-protected!" message will be displayed and storing will not be possible.
* The STORE VOICE function can be used if PERFORMANCE MEHORY data has not been changed.
(m) If the store switch is used to enter the STORE mode, the "STORE ALL FROM >> CURRENT EDITING TO >> CURRENT SELECTED" message will be displayed. With the STORE hLL function the store position selection process is greatly shortened.
(n) Press the DATA ENTRY YES button to begin the store operation.
* Both channels A and D cannot be stored at the same time. The store operation must be performeci on one channel at a time.
* After the store operation be sure to turn the VOICE HEFORY or RAM cartridge memory protect function back on.

Fig. 23. Replacing Original Voice Memory.

* II: Storing in a New VOICE HEHORY or PERFORI:ALiCE HEMORY (fig. 24)

In order to store in a new VOICE HEHORY or PERFORIANCE HE:IORY position, the STORE VOICE function (the store function which permits moving VOICE MEHORY data to a new menory location) is used. In adaition the STORE PERFORI:ALICE function riust be used. The Sr'ORE PERFORIAANCE function is the function which permits moving PERFORHANCE MEHORY data to a new meraory location.

* To store to a new position in a RANi cartridge, or to store from a ROH or RAM cartridge to the internal memory (single load) insert the cartridge into the DXI and press the CARTRIEGE switch.
* If a PERFORMANCE HEMORY CARTRIDGE is used the "**ERROR** Cartridge format conflict!" message will be displayec when the CARTRIDGE switch is pressed.
* To store from the internal memory to a RAM cartriage (single save) insert the cartridge into the cartridge slot and turn the CARTRILEE switch OFF.
(j) Switch to the FUNCTION mode.
(k) Call the protect memory write function.
(1) Fress the DATA ENTRY section NO button.
(m) Switch to the STORE mode and press the DATA ENTRY NO switch causing the "STORE VOICE FROH >> EDITIIJG $X X X X$ TO \gg IivT Al-1 XXXX" nessage to be displayed.
* "INM-Al-1" is the memory position, and "xxxx" is the voice name.
(n) The VOICE NEHORY and bank 2 nd voice switches are then used to set the store destination. The destination position is displayed following "TO" on the LCD display.
* When storirg from a cartricge into the internal memory select the destination location after the CARTRIDGE switch has been turned OFF.
* When storing from the internal memory to a RAM cartridge, select the destination location after the CARTRIDGE switch has been turned ON.
* If a perforlance Memory Cartridge is used, the "**ERROR** cartridge format conflict!" message will appear when the cartridge switch is pressed.
(0) Pressing the DATA ENTRY YES button begins the actual store operation.
* Store voice can only be performed on one channel at a time. After performing the store operation on one channel,

Fig. 24. Storing New Voice and Performance Memory

BTORE	FROM PEDITHG

press the lighted VOICE HEMORY selector to switch to the other channel, then perform operations (m)--(o) once again.

* In the case of a RAN cartridige, always remember to turn the memory protect switch back on after the store operation.
(p) When effect ciata is also to be stored in the internal PERFORMANCE MEMORY, call the STORE mode one more time.
(q) press the DATA ENTRY NO button twice, causing the "STORE PERFORI:ANCE FROH >> CURRENT YYYY TO >> INT Pl-I YYYY" message to be displayed.
* "INT Pl-1" is the memory position, and "YYYY" is the performance name.
(r) Press the DATA ENTRY YES key to begin the store operation.
Caution: Voice data is not stored if a STORE PERFORI:ANCE operation is performed without storing to VOICE MEMORY.
(5) The Compare Function (fig.25)

This function permits comparing the original sound of a voice with the current sound of the edited voice while in the EDIT mode.
(a) After changing even à single parameter in the EDIT mode, pressing the EDIT/COIPPARE switch a second time activates the compare mode. This recalls the origiral voice data and sound permitting checking and comparison throughout the edit process.

* In the compare mode, the VOICE MEMORY and edit parametr switches stop flashing, and the EDIT/COMPARE switch begins to flash.
* If the EDIT mode is entered and the EDIT/COIIPARE switch is pressed again before any parameter changes are made, the EDIT mode is exited.
(b) To resume edit operation from the compare mode, simply press the EDIT/COMPARE switch again.
* The EDIT and COMPARE modes alternate each time the EDIT/COMPARE switch is pressed.
(c) It is possible to exit the edit process while in the compare mode, cancelling any parameter changes which have been made. In this case, simply press a different VOICE HEMORY or PERFORMANCE MEMORY switch while the EDIT/COMPRRE switch is flashing.

Fig. 25. Compare Function

(6) The Data Recall Function

A data recall function has been included to provide a "backup" if erroneous data is accidentally entered durirg a compare operation. It is possible to recall the data using the RECALL EDIT BUFF function in the FUNCTION mode. \rightarrow P. 45

* If a different VOICE HEHORY or PERFORMANCE MEMORY button is pressed during a compare operation, the EDIT mode is exited and the edit data display is lost. However, the data is still in the buffer memory and can be recalled using the RECALL EDIT BUFF function.

4-2 The Voice Parameter Buttons Below the LED Display

All the parameters which are required for the creation of voices are incorporated in the voice parameter switches arranged below the LED display. These parameters can be broadly classified into the following three function groups:

```
All operator functions (can be memorized)
Single operator functions (can be memorized/*
Operation only functions (cannot be memorized/** )
```

ALGORITHM (fig. 26)
The DXI has two FII tone generator sections--channel A and channel B. Each of these incorporates 6 operators. In this section it is possible to set up the operator combinations to form the desired algorithm (the modulator-carrier relationship between the operators). This is the basis for all voice creation.

(1) OPERATOR SELECT **

These switches permit selection of an operator to be worked on in the EDIT mode. When one of these switches is turned on its indicator will light. When working on one operator at a time, use these switches to select the operator to be edited as required.

* When an individual operator is selected the data concerning that operator is displayed on the LED display.
* When the power is initially turned on, operator 1 is automatically selected.
* The operator selector status cannot be stored in the VOICE MEMORY.

Fig. 26. Algorithm Section

(2) OPERATOR ON/CFF **

These switches permit turning operators 1--6 On or OFF. When an indicator is On the corresponding operator is ON. When an indicator is OFF the corresponding operator is OFF.

* If all cperators but the one beins worked on are turned OFF while editing, checking the details of operetor parameters is easier.
* If all the operator ON/GFF switches are turned OFF, no sound will be output.
* All operators are automatically turned ON when power to the DXI is initially turned on.
* The operator Oi/CFF switcii status cannot be stored in the VOICE MEriORY.
(3) FEEDBACK: 0--7

This functicn permits an operator to modulate itself with no relationship to
carrier-modulator functions. In general this function makes it possible to create brighter souncis and sounds with noise-like
characteristics. Operators which can have
feediback are pre-determined in each algorithm pattern.

* On the LED display, operator numbers with a dot to their lower right-hand corner can have feediback applied (fig. 27).
* The algorithm patterns are printed on the display panel to the left of the LED display. Gperators indicated with a loop-like line printed from their output back to their input are operators to which feedback can be applied (fig. 28).
* By applying feedback, harmonics are genercted withir. a sirigle operator, performing the function normally carried out by combination of two or more operators. If an operator to which feedback is applied is used as a modulator, not only does the carrier generate a greater rumber of harmonics, the distribution of the harmonic

Fig. 27. LED Display: Algorithm and Feedback Positions

Fig. 28. Feedback

spectrum is more uniform. This also makes it possible to create white-noise type sounds with an even harmonic distribution throughout the entire frequency spectrum. \rightarrow P. 68

* Feedback level can be set between 0 and 7. At C feedback is OFF, and at 7 feedback is maximum.
(4) ALGORITHM: 1--32

This permits selection of the algorithm which is most appropriate for the voice to be created from the 32 algorithm types which are provided.

* The selected algorithm is shown on the LED display. The lowest row of operators function às carriers. All higher rows of operators are modulators (fig. 27).
* All alcorithm patterrs are printed on the display panel to the left of the LED display. The lowest row of operators in each algorithm are carriers, and all operators above these are modulators.
* Although a large number of algorithns are provided, generally speaking algorithms with fewer carriers and a greater number of modulators produce the strongest sounci variation. In addition, noise-like characteristics are easier to produce. On the other hand, an algorithm with more carriers lends itself to richer, thicker sounds.
\rightarrow P. 69
OSCILLATOR (fig. 29)
This section permits setting the pitch data for each operator in the FM tone generators. This section functicns to set the pitch and basic sound.
(5) HODE*

This permits setting the oscillator mode (FREQUEICY RATIO/FIXED FREQUENCY).

FREQUENCY RATIO

* This is the normal mode in which operator pitch varies according to the

Fig. 29. Oscillator Section
\qquad

key pressed. The operator pitch is set at a 0.50-61. 69 ratio in relation to the keyboard standarci pitch (8').

* If all operators are set to this mode then the raamonic content of the sound is the same regardless of the pitch.
FIXED FREQUENCY
* This mode permits fixing the operator frequency. Operator pitch can be set between 1 Hz anc 9770 Hz .
* If all operators are set to this mode then the pitch of the sound will not change regardless of the key pressed. The fixed frecuency mode is useful for creating sounds with no pitch variaticn, such as bells and noise. It can also be usea when the pitch of one operator is set extremely low in order to modulate the carriers to produce a vibrato effect.
(6) COARSE* (7) FINE*

These functions set the pitch of each operator.

* For operators which are functicning as carriers this determines the keyboard pitch (footage), and for opertors which are operating as modulators it determines the harmonic spectrum of the resultant sound. \rightarrow P. 67
* When the operator being adjusted is a modulator, raising the pitch increases high-irequency harmonic content for a brighter, sharper sound.
* If the pitch of a fiodulator is varied only slightly from that of the carrier which it is modulating, low frecuency harmonics are generated as well as high frequency harmonics, resultireg in a "pitchless" sound.
* The ciata control increments are different according to the oscillator mode setting.

FREQUEINCY RATIO mode

Data is irput as a ratio in relation to
standard keyboard pitch.

COARSE

0.50--31.00 (FINE at :.IN: 1.00
increments)
0.99-61.69 (FINE at IAK: 1.99
increments)
FINE (COARSE increments $x 1 / 100$)
0.50--0.99 (COARSE at AIN: 0.01
increments)
31.00--61.69 (COARSE at liAX: 0.31
increments)
The EXI standarci keyboarci pitch is ε^{\prime}. Therefore, in terins of footage,
$0.50=16^{\prime}, 1.00=8^{\prime}$ and $2.00=4^{\prime}$.
FIXED FREQUEINCY mode
Dátá is input as a frecuency. COARSE
1.000--1000 Hz (FIHE at LIIN: $x 10=10 / 3$
oct $=4000$ cent increments)
9.770--9770 Ez (FINE at liAX: $x 10=10 / 3$
oct $=4000$ cent increments)
FINE (COARSE increments $x \mathrm{l} / 100$) 1.000--9.770 Hz (COARSE at HIN: $1 / 30$
oct $=40$ cent increinents)
1000--9770 HZ (COARSE AT HAX: $1 / 30$ OCT $=40$ cent increments)
(8) DETUNE*: -7 -- +7

This function slightly detunes the pitch of each operator in relation to the others, creating a deep, full sound.

* Detune data can be set over a -7 -- +7 rance (maximum detune=t2 cents). For example, if the frequency ratio is set at 1.00 , a maximum pitch variation of 1.2 Hz will be produced when the C3 key is pressea.
* If cietune is applied to operators acting as carriers, a slight pitch variation is proculced, resulting ir á "multi-instrument" sound.
* If detune is applied to operators acting as modulators, a slight phase shift variation is introduces causir:g a periodic timbre variation.

ENVELOPE GENERATOR (fig. 30)
The distinct character of a musical instrunient is determined not only by it's harmonic content, but by the way its level, pitch and harmonic content vary with tine. The ENVELOPE GENERATOR permits programming all these elements for any voice.

* The EG sets the time-based variation of level and timbre, while the PITCI EG sets time-based variation of pitch.
* The LG anc PITCH EG both offer \& variable parameters, compared to the 4 variable parameters available with conventional ADSR type envelope generators.
(9) RATE 1-4*: 1--99
(10) LEVEL 1--4*: 0--99

These switches select the desired EG or PITCF EG parameter.

Fig. 30. Envelope Generator Section

EG (fig. 31)
This is the level and timbre envelope generator. It can be set individually for each operator.
Each parameter functicns as follows:
(a) Rl (Rate l): the time it takes to reach Level lafter \bar{i} key is pressed.
(b) R2 (Rate 2): the time it takes to reach Level 2 from Level 1.
(c) R3 (Rate 3): the time it takes to reach Level 3 from Level2.
(d) R4 (Rate 4): the time it takes to reach Level 4 after a key is released.
(e) Ll (Level 1): the initial level when a key is pressecu.
(f) L2 (Level 2): an intermediate level between Level 1 and Level 3.
(g) L3 (Level 3): The sustain level maintaineci while a $k e y$ is held.
(h) L4 (Level 4): The basic level returned to after a $k \in Y$ is released.

* For the RATE parameter: 99 is the fastest rate and 0 is the slowest.
* LEVEL determines the operator level at each point alcng the EG curve. LEVEL is determined by setting the required amount of attenuation (-dE). Operator LEVEL is maximum when set at 99, and minimum when set at 0 (-96 dE).
* If a carrier L4 is set to any value greater than 1 , sound will continue to be output even if no keys are pressed.
* When the EG is not to be used, set Ll, L2, and L3 to 99, and L4 to 0. (The initial voice diata settings are: $\mathrm{Ll}-\mathrm{L} 3=99, \mathrm{~L} 4=0$, R1--R4=99) \rightarrow P. 44
* Since in the Fl tone generator systea the carriers control pitch and level while the modulators control timbe, applying the EG to a carrier results in a correspondng level variation, while applying EG to a nodulator results in a timbre variation.
* Figure 48 shows an example of a piano carrier envelope. Figure 49 is an

Fig. 31. DXI Basic EG Pattern

Fig. 32. Piano Carrier Envelope

$$
\begin{aligned}
& \mathrm{L} 1=99
\end{aligned}
$$

$$
\begin{aligned}
& \text { key on }
\end{aligned}
$$

Fig. 33. Organ Carrier Envelope

Fig. 34. Brass Carrier Envelope

organ carrier envelope, and figure 50 is a brass wind instrument modulator envelope.

* The EG parameters can be set
indipenciently for each operator.
However, when there will not be a great
difference between the EG settings for each operetor, the FUNCTIOI, mode COPY OPERATOR DATA function can greatly shorten the EG setup process. \rightarrow P. 42
* When the sustain footswitch is used, all EG parameters come into play. For example, when the footswitch is pressed, the key-on state is helci and the EG responds accordingly--i.e. if L3 is set at 99 , the sourd will continue at that level as long as the footswitch is helc. When the
footswitch is released (and no keys are presseá) to sound returns to L4 at the rate determined by R4 (fig. 5la). If L3 is set between 1 and 98 , then the sound level will reach L3 at the rate R3 when the keys are all released, then the level will return to $L 4$ at rate R 4 when the footswitch is released (fig. 5lb). If L 3 is set to 0 , then the sound will decay towarcis 0 at rate 3 when the keys are released, and the decay rate will switch to N 4 when the footswitch is released (fig. 5lc). If $\mathrm{L} 3=0$, R3=99 anci $\mathrm{P} 4=99$, no sustair. effect can be produced. Further, wher $\mathrm{L} 2=\mathrm{L} 3=1--99$, the L2 \& L3 level will be held as long as the footswitch is held.

Fig. 35. Sustain Effect

PITCH EG (fig. 36)
The pitch EG affects all cperators simultaneoulsy, permitting application of an overall pitch envelcpe. The PITCH EG parameters are as follows:
(a) Rl (Fate l): the time it takes to reach Level 1 pitch after a key is
pressed.
(b) R2 (Rate 2): the time it takes to reach Level 2 pitch from Level 1.
(c) N3 (Fate 3): the time it takes to reach Level 3 pitch from Level2.
(d) R A (Rate 4): the tine it takes to reach Level 4 pitch after a key is released.
(e) Ll (Level 1): the initial pitch when a key is pressed.
(f) L2 (Level 2): an intermeciate pitch between Level l and Level 3.
(g) L3 (Level 3): The sustain pitch maintained while a key is held.
(h) L4 (Level 4): The pitch returned to after a key is released.

* For the RATE paremeters, 99 is the fastest and 0 the slowest.
* For the Level parameters, 50 corresponds to standara keyboard pitch, 0 is -4 octaves, and 99 is +4 octaves.
* When the PITCH EG is not to be used, Ll--L4 should all be set to 50 . (The initial voice data is: $\mathrm{Ll}-\mathrm{L} 4=50$, Rl-R $4=99$) \rightarrow P. 44
* The PITCE EG is useful not only for creating musical instrument sounds, but also for synthesizing the sounds of animals, whistling, or any sound effect that has a distinctive pitch variation.

Fig. 36. DXI Basic Pitch EG Pattern

(11) DISPLAY SELECT ** : EG/PITCH EG

This switch determines whetrer the LED
display displays the values of the EG or
PITCI EG parameters.

* EG parameters Rl--R4 and Ll--L4 are all displayed in numeric (digital) form. A bar graph display also provides a craphic irdication of the EG curve.
* The bar graph has scales for both aniplitude $(-\mathrm{dB})$ and cents (pitch. 100 cents = semitone). The cents scale for the PITCE. LG is printed to the left of the bar graph, and the amplitude scale for the $L G$ is prir.tec to the right of the bar graph (fig. 53).

Fig. 37. EG LED Display

* The position of the display select switch can not be stored in memory.

KEYBOARD SCALING (fig. 38)
The high and low freciuency ranges of acoustic instruments generally do not have the same level or timbre envelcpe. This balance between the low and high frequency range envelopes has been developed over literally centuries, and that is why the sound of an acoustic instrument is so pleasing to the ear. The DXI KEYBOARD SCALING function allows synthesizing this kind of envelope variation. A natural, pleasing overall response can be produceci by varyincj the way in which the EG is applied at different frecuencies. The KEYBOARD SCALIWG feature has two functions--LEVEL SCALING and RATE SCAL ING.

Fig. 38. Keyboard Scaling Section

LEVEL SCALING (fig. 39)
This function varies the EG level according to the key played. Since this can be applied to each operator individually, it can be used to control level and timbre. The LEVEL
SCALING function has 5 parameters, permitting creation of a broad variety of scaling
characteristics. The 5 parameters are:
(a) BEEAK POINT: This sets the key which is to be the center point of the scaling curve.
(b) Left CURVE: This sets the level scaling curve to the left of the BREA POIITT.
(c) FIGHM CURVE: This sets the level curve to the right of the BREAK POINT.
(i) LEFT DEPTH: This sets the depth of the scaling effect to the left of the BREAK POINT.

Fig. 39. Level Scaling

Fig. 40. Simulated Keyboard Split with Level Scaling

(e) RIGHT DEPTH: This sets the depth of the scaling effect to the right of the BREAK POINT.

* LEVEL SCALING is very effective in creating natural-sounding acoustic instrument voices.
* As shown in figure 56, LEVEL SCALING permits the creation of completely different timbres for the low and high frequency ranges.
(12) LEFT DEPTH * : 0--99

This sets the depth of the LEVEL SCALING effect to the left of the EREAK POIIJ?.

* The data range is $0--99$. At 0 LEVEL SCALING is OFF, and at 99 maximum level variation is produced.
* The depth setting can not cause operator level to exceed the level at which the OPERATOR OUCPUT LEVEL parameter is set (maximum OPERATOR OUTPUT LEVEL = 99). Depth data set for an output level greater than the OPERATOR OUTPUT LEVEL setting will result in a maximum output level equal to the OPERATOR OUTPUT LEVEL setting.
(13) LEFT CURVE * : +LIN/+EXP/-LIN/-EXP

This sets the LEVEL SCALING curve to the left of the EREAK POIITT.

* One of the following four curves can be selected:
+ LIN: This is a linear level increase, and produces the largest audible variation.
+ EXP: This is an exponential increase, which produces a gentler variation.
- EXP: This is an exponential decrease in level. Gentle variation.
- LIN: This is a linear cecrease in level. Large audible variation.
* The selected curve lights on the LED display.
(14) EREAK POINT * : 0--99

This sets the key which is to be the "center" of the level scaling curve. It is possible to set different scaling characteristics for the keyboard sections to the left and right of the BREAK POINT.

* The key selected to be the break point is not affected by level scaling.
* The data range is 0-99. $0=A-1,99=\mathrm{C} 8$. This means that the BREAK POINT can be set at any half-tone interval on the keyboard.
* Since the keyboard range is from EO to E6, it is possible to set the BREAK POINT outside the keyboard range.
(15) RIGHT CURVE * : +LIN/+EXP/-LIN/-EXP

This sets the LEVEL SCALING curve to the right of the BREAK POINT.

* The functions are the same as for LEFT CURVE, described above.
(16) RIGHT DEPTH * : 0--99

This sets the LEVEL SCALING depth to the right of the BREAK POINT.

* The functions are the same as for LEFT DEPTH, described above.

RATE SCALING (fig. 41)
This function makes it possible to set the EG rate so that it increases as higher notes are played on the keyvoarc. That is, the higner the note played, the faster the EG rate. Only a single parameter is available for this function--DEPTH--however, it can be set individually for each operator, so both level and timbre can be controlled.

* RATE SCALING makes it possible to synthesize the sound of some string instruments, like piano and guitar, which have much faster resconse in the high frequency ranges (fig. 42).
(17) RATE SCALING * : 0--7

This sets the depth of RATE SCALING.

* When a RATE SCALING value is set, the EG rate increases as higher notes are played throught the $A-1$ to F\#7 keyboard range. The EG rate is constant for $\bar{c} 1$, notes above $F \# 7$ (fig. 41).
* The diata range is 0-7. At 0 RATE SCALING is OFF, and at 7 RATE SCALING is maximum (righest EG rate).

Fig. 41. Rate Scaling'

Fig. 42. Rate Scaling Function

Creates envelope effect: low note section sounds are long, high note section sounds are short.

SENSITIVITY (fig. 43)
This is a master parameter which sets the sensitivity of KEY VELOCITY (initial touch) and AMPLITUDE MODULATION (tremolo, etc.).
(18) KEY VELOCITY * : 0--7

This function makes it possible to set natural touch response (initial touch) such that the harder a key is played, the louder the sound and the brighter the timbre, etc. "How hard" the key is played is actually sensec by detecting key velocity.

* This can be set independently for each
operator. When applied to a carrier the result is a level variation, and when applied to a modulator the result is a timbre response variation.
* The data range is 0--7. At 0 the function is OFF, and at 7 sensitivity is maximum.
* Throughout the range $0-0$ sensitivity can not be set so that the maximum level produced when a key is played exceeds the OPERATOR OUTPUT LEVEL parameter setting. When sensitivity is set to 7, however, actual maximum output level can exceed the OPERATOR OUTPUT LEVEL setting by a maximum of 4 dB .

Fig. 43. Sensitivity Section

(19) AMPL. HODULATIOH * : 0--3

This master parameter sets the sensitivity of LFO nodulation for tremolo and wow type effects, and EG BIAS for expression and brilliance effects (fig. 44). This feature works by varying operator output level.

* AMPLITUDE MODULATION sensitivity can be set individually for each operator. When applied to a carrier the result is a level variation, and when set for a

Fig. 44. LFO Modulation Functions

moculator the result is a timbre variation.

* In the case of LFO nodulation, when applied to a carrier the result is tremelo, and when applied to a modulator the result is a wow effect. The EDIT mode MMD parameter and FUNCTION mode controller paramaters (HODULATION WHEEL, FOOT CONTROLLER, AFTER TOUCH, BREATH CONTROLLER) can be used for the control and application of LFO modulation. \rightarrow P. 38
* In the case of EG BIAS, if applied to a carrier the result is volume control, and when applied to a modulator the result is brilliance control. The four controllers programmable in the FUNCTION mode can be used to control and apply EG BIAS modulation. \rightarrow P. 38
* The data range is $0--3$. $0=0 \mathrm{FF}$, $3=$ maximum (maxinum variation is 48 dB).
* If AMPLITUDE MODULATION is set to 0 for all operators, tremolo, wow and brilliance effects can not be achieved.
(20) CPERATOR/OUTPUT LEVEL : 0--99 (fig. 45)

This independently sets the output level of each operator in the FE: tone generators.

* When adjusted for operators which are functioning as carriers the overall level is determined as well as the mixing balance between operators. When adjusted for a modulator the result is a difference in the harmonic spectrim generated, and therefore a difference in the timbre of the sound produced.
* Data range is 0--99. The level set is displayed on a bar graph type readout on the LED display. Initial voice data for OPl, for example, is 99, which corresponds to a level of -10 dBm .

Fig. 45. Operator/Output Level

4-3 PERFORMANCE MEMORYIFUNCTION SECTION VOICE PARAMENTERS

A number of voice parameters are also available in the performance memory/Function switch group. These are LFO MODULATION parameters, OSCILLATOR KEY SYNC, KEY TRANSPOSE and VOICE NMAE parameters.

* The voice parameters are available in the upper-row buttons 1--8, and the lower-row buttons 1 and 2. The lower-row buttons $3-8$ are inactive.
* When these parameters are called the LCD àisplay will reać "EDIT MODE <<VVVV>>

WWNW (XX-YY) ZZ" (fig 46). "VVVV" is the function abbreviation, "WWW" is the function name, " (XX--YY)" is the data range, and "ZZ" is the data.

* All the voice parameters in this section apply to all operators simultaneously.

Fig. 46. LCD Display: Edit Data

$$
\begin{aligned}
& \text { EOIT MODE <्यUUU>> }
\end{aligned}
$$

$$
\begin{aligned}
& 22
\end{aligned}
$$

LFO (fig. 47)
LFO stands for Low Frequency Oscillator. It generates the low-frequency signals necessary to produce tremolo, wow and vibrato type effects.

* LFO HODULATION is controlled through the PMS (PITCH HODULATION SENSITIVITY) funcion in this block, and the AMPLITUDE MODULATION (fig. 59) function in the SEIJSITIVITY block.

Fig. 47. Details of Performance Memory/Function Section Voice Parameter Switches

(1) WAVE : TRIANGLE/SAW DOWN/SAW

UP/SQUARE/SINE/S. HOLD
This selects the LFO waveform. All operators are affected simultaneously.

* Six waveforms are available (fig. 48).

TRIAIIGLE: This produces a very clear periodic modulation effect. Ideal for tremolo.
SAN DOME: (Sawtooth) An effect like a periodic drop in the sound.
SAW UP: (Sawtooth) An effect like a periodic increase in the sound.
SQUARE: The sound periodically "jumps" between two levels.
SINE: Smooth variation. Ideal for wow and vibrato.
S. HOLD: (Sample and Hold) Random variaton.

* The LCD will read "EDIT MODE <<LFW〉> LFO waveform select $X X X X "$. "XXXX" is the waveform name.

Fig. 48. LFO Waveforms | TRIANGLE |
| ---: |
| SAW DOWN |
| SAW UP |
| SQUARE |
| SINE |
| S/HOLD |

(2) SPEED : 0--99

This sets the LFO speed. All operators are affected simultaneously.

* Data range is 0--99. 0 is the slowest speed $(0.06 \mathrm{~Hz})$, and 99 is the highest speed (50 Hz).
* The LCD display will read "EDIT MODE <<LFS>> LFO speed (0-99) XX". "XX" is the data.
(3) DELAY : 0--99

This sets the delay between the time a key is pressed and time when LFO modulation begins.
All operators are affected simultaneously.

* DELAY is particularly effective when used with a vibrato effect.
* Tha data range is 0--S9. $0=0 \mathrm{OFF}$. A setting of 99 produces approximately a 3 second delay.
* With longer delay settings, there is not only a delay before the LFO effect begins, the LFO "cornes in" with a smooth increase in modulation level for exceptionally natural LFO effects (fig. 49).
* The LCD display will read "EDIT MODE <<LFD>> LFO attack delay time (0-99) XX". "XX" is the data.
(4) PMD : 0--99

Pitch Modulation Depth. This sets the depth of pitch variation produced by LFO modulation (vibrato). Unlike the FUNCTION mode controllers, this effect is always ON once set. All operators are affected simultaneously.

* The data range is $0-99$. $0=0 \mathrm{FF}$, At 99 maximum pitch variation is produced (when PMS $=7$, maxinum variation is $\ddagger 1$ octave $=1200$ cents) .
* The LCD display will read "EDIT MODE <<LPUD>> LFO pitch modulation depth (0-99) XX". "XX" is the data.
* When PMS is set to 0 no effect is produced.
* Even if PMD is set to 0, vibrato can still be applied using the FUNCTION mode controllers. \rightarrow P. 38
(5) PMS : 0--7

Pitch Hodulation Sensitivity. This master parameter sets the vibrato depth (pitch modulation) as applied by the controllers set up in the FUNCTION mode. This sets the maximum depth of the PMD parameter in the same block, as well as the FUNCTION mode controllers (fig. 44). All operators are affected simultaneously.

* The data range is from 0 to 7. $0=0 \mathrm{PF}$. $7=$ maximum pitch variation (when PMD is set to 99 , pitch variation is $\ddagger 1$ octave $=1200$ cents) .
* The LCD display will read "EDIT HODE <<LPMS>> LFO pitch modulation sens. (0-7) X". "X" is the data.
* Vibrato can not be applied if PMD is set to 0 and all the controller ASSIGN parameters in the FUNCTION mode are OFF.

Fig. 49. Delay Effect

Fig. 50. Phase and Key Sync On/Off
a. LFO with key sync on.

b. LFO with key sync off.

Fig. 51. Operator Waveform Phase and oscillator Key Sync On/Off
a.Oscillator key sync on.

b. Oscillator key'sync off.
phase zero.

(6) AMD : 0--99

Amplitude Modulation Depth. This sets the depth of LFO modulation applied to operator output level to produce tremolo and wow effects. Effects set by this parameter are continuously on and not affected by the FUNCTION mode controllers. All operators are affected simultaneously.

* The data range is 0--99. $0=0 \mathrm{FF}$, at 99 the level variation is maximum (when AMPL. MODULATION SENSITIVITY $=3$, variation is 42 dB peak-to-peak).
* The LCD display shows "EDIT MODE <<LAMD>> LFO amplitude mod. depth (0-99) XX". "XX" is the data.
* No effect is produced when AMPL. MODULATION $=0$.

(7) KEY SYIJC : ON/OFF

Normally the beginning of the LFO cycle is synchronized with key-on timing. The KEY SYNC function permits turning this synchronization ON or OFF. All operators are affected simultaneously.

* When OII, the LFO waveform begins from the same phase angle at key-on (90 degrees) (fig. 66a). This is ideal for sound effects which require a sharp attack.
* When OFF, LFO/key synchronization is defeated (fig. 66b). When KEY SYNC is OFF, it is possible to create natural-sounding chorus, ensemble and rotary-speaker type effects.
* The LCD display will read "EDIT MODE <<LFKS>> LFO key synchronize XX". "XX" is the data.
(8) OSCILLATOR KEY SYNC : ON/OFF (fig. 47)

Normally the output of all operators is synchronized with key-on timing. The OSCILLATOR KEY SYNC function permits turning this synchronization ON or OFF. All operators are affected simultaneously.

* When OSCILLATOR KEY SYNC is ON, all operators begin output from the same phase angle (0 degrees) when a key is pressed. This is the normal mode of operation (fig. 5la). In this case, since all operators are at the same phase the sound is smooth and "unified". When the POLY (polyphonic) mode is set, however, the 17 th note when the KEY ASSIGI mode is set to DUAL (16-note polyphonic), the 33 rd note when the KEY ASSIGN mode is set to SINGLE (32-note polyphonic), and the 2nd note when the MONO mode is set, are likely to generate noise.
* When OFF the operator waveform key-on synchronization is defeated (fig. 5lb). This means that the timbre may be slightly different each time a key is pressed. No noise will be produced.
* The LCD display will read "EDIT MODE <<OKS>> oscillator key synchronize XX^{n}. "XX" indicates the ON/OFF status.
(9) KEY TRFMSPOSE : +24 -- -24 (fig. 47)

This function permits transposing the overall pitch of the keyboarci. All cperctors are affected simultaneously.

* The data rancje is +24 to -24 . Each increment corresponds to a semitone step. With c3 as the reference pitch, this provides a ± 2 octave transposition range.
* Normally this is set to +00 (reference pitch).
* Data can be set simply dy pressincy a key on the keyboard. The key which is pressed takes on the reference pitch (C3), and the rest of the keyboard is transposed accordingly (fig. 53).
* Pressing any key higher than C5 results in a +24 data setting, anci pressing any key lower than Cl results in a -24 data setting.
* Data can also be entered using the DATA ENTRY section.
* Transpose data can not be altered using the keyboard. If the wrong key is pressed, the data must be altered using the DATA ENTRY section, or the KEY TRAMSPCSE function must be re-entered.
* If the data mitry section is used first, the keyboard can not be used to enter different data.
* The LCD display will reaci "EDIT HODE <<TRINP>> Voice key transpose (direct key in) $x x^{\prime \prime}$. "XX" is the data. "Direct key in" indicates that transpose data can be set usinc the keyboara.

Fig. 52. Key Transpose

(10) VOICE NAME : 10 characters (fig. 47)

This function permits giving voices in the VOICE HDFORY a name of up to 10 characters in length.

* The LCD will read "EDIT HODE <<VINAM>> Voice name ***xXXXYXXXZX***". The
"XXXXXXXXXX" portion of the display is the voice name. Characters are entered one at a time using the cursor (■).
* Characters which can be used for naming voices are printec below the VOICE PARAMETER and VOICE iEMORY buttons. Pressing a button inputs the corresponding character which is then displayed at the appropriate position on the LCD display (fig. 53).

Fig. 53. Symbols and Characters for Use in Naming

* The cursor can be moved usincj the DATA ENTRY section + and - buttons.
* In the play mode, the channel \bar{A} voice name is displayed on the upper row of the LCD cisplay, anci the channel B voice name is displayed on the lower row ("INT Al-1 XXXX POLY SRC=0 INT Bl-1 XXXX PCLY SRC=0). "XXXX" is the voice name, and "INT Al-1" and "INT Bl-1" are the VOICE MEHORY positions. Data following the "FOLY" portion of the display is PERFORAMMCE IEMORY data.
* For "eripty" menory positions in à VOICE RA:i CARTRIDGE in which no voice is stored, the "트트픙 symbol is displayed.
* In the DKl it is possibie to name the PERFORIANCE HEHORY positions as well as the VOICE HEHORY positicns. \rightarrow P. 40
* When using the VOICE WAME function, the voice paraneter buttons below the LED display become the character input buttons. In order to switch to a parameter called by one of these buttons, first exit the VOICE IJAME mocus by pressing the PERFORHANCE WHHORY/FUNCTION VOICE PARAMETER button, then select the desired parameter.

Fig. 54. Voice Name Display in Play Mode

FUNCTION MODE/EFFECTS AND OTHER FUNCTIONS

In the FUNCTION mode, effect data which will be comidined with the voice datc for performance can be set. Memory functions anc HIDI furcticns can also be set in this mode.

5-1 The 3 function of the FUNCTION mode

liost of the FUNCTION MODE parameters can be called using the PERFORLANCE HEHORY/FUNCTION switches. Further, most all parameters can be set indepenciently for channel A and B. The parameters are divided into 3 main groups: perforilaime hehory parameters, HEAORY HANAGEREIT and HIDI INFO. CONTROL (fig. 55).

(1) PERFORIAMCE FHORY PARAMETER

This function permits setting effect or performance functions. The upper row of $\&$ switches in the PERFORHANCE MEMORY/FUNCTIOH section, the lower-row switches 1 thrcugh 3 (performance \& voices), the KEY ASSIGN MODE switches, the CARTRIDGE switches and the VOICE HEMORY number switches can all be used in the PERFORHAHCE HEHORY.

* Both MASTER TUNE and DUAL MODE DETUNE functions are located in BANK 1. However, only DUAL MODE DETUNE can be stored in the performance hemory.
* In BANK 2--8 the PITCH BEND, PORTAMENTO, LFO HODULATIOA and EG BIAS effect parameters, and the PROGRAM OUTPUT ASSIGir output parameters are available.
* The KEY INDIVIDUAL AFTER TCUCH function has been included in the PERFORMANCE \& VOICE buttons 1 through 3.

(2) HEHORY HAHAGEIUENT

These are the memory control functions. Buttons 4--6 in the lower row of the PERFORIAACE HENORY/FUNCTION group apply to memory management. The INITIALIZE MEHORY function for creatirg new voices from scratch, the EDIT RECALL BUFF function for retreiving lost edit data and other memory control functions are included. MEMORY dishagenent functions cammot be stored in the PERFORAANCE MEMORY.
(3) MIDI INFO COETROL

Controls the functions of the MIDI COHNECTOR. HILI INFO CONTROL functions cannot be stored in the PERFORMANCE HEMORY.

5-2 The FUNCTION mode control process

(1) The FUNCTION mode control process

Of the FUNCTION mode functicns, any process which involves the PERFORMANCE MEMORY PARAHETERS concerns the editing of effect or performance function data. The following processes. I through IV are possible. Other types of operation (MEMORY MANAGEMENT, HIDI INFO CONTROL, etc) fall linder the heading of process V.
*I:Editing internal PERFORMANCE MLHORY data.

Selection of the edit target/call the data to the buffer \Rightarrow
Switch to the FUNCTION mode \Rightarrow
Set data

Fig. 55. Function Mode Parameter Switches
四

자장

\square

Store the FUNCTIOI data = replace the PERFORHANCE MEMORY
*II: Eu̇ting PERFORHALICE $H E H O R Y$ CARTRIDGE data.

Selection of the edit target/call the data to the buffer \Rightarrow
Switch to the FUNCTION node \Rightarrow
Set data
Store the FUNCTICN data $=$ replace the PERFORIMANCE HEHORY
*III:Setting effects after voice editing or initialization.

Switch to the FUHCTION mode \Rightarrow
Set data \Rightarrow
Store the FUNCTION data = write to PERFORMALSCE MEMORY
*IV:Combining data with a selected voice.
Select target voice/call to buffer \Rightarrow
Store the FUNCTION data $=$ write to PERFORIAANCE :IEMORY
*V: NASTER TUNE, HENORY MAHAGEHENT or HIDI
INFO. CONTROL operation.
Switch to FUNCTION nocie \Rightarrow
Set data $=$ control command
(2) TARGET DATA SELECTION/CALLING THE DATA TO THE BUFFER

To eciit the performance memory or
performance memory cartridge aata, it is necessary to first call the data to be edited into the performance edit buffer. The method of calling performance memory cartridge data into the buffer is different from that of calling voice menory cartriage data into the buffer, so care should be taken to follow the correct procedure.
*I: Calling internal performance memory data (iig. 56)
(a) Turn all mode selectors OFF.

* It does not matter if the EDIT switch is flasning.
(o) When calling a VOICE CARTRIDGE memory number into the internal menory (e.g. when accessing ROII cartricige voices to use with one of the preset PERFORAANCD IEBORY positions) insert the appropriate voice memory cartridges in cartriage slct is andi i .
* In the case of a RON cartridge, be sure to set the cartridge bank select switch to the desired bank before insertion.
(c) Select the target PERFORHANCE HEHORY to be edited.
* After selecting the performance memory to be changed, switch to the FUNCTION mode.
(d) To change the VOICE inmory numier combination, select the new voice data which is to be combined.
* Although the voice memory aata numbers can be changea after eciiting the performance memory parameters, the effects anu performance functions should be set according to the voice to de useci. It is therefore vetter to call the voice data and edit the performance memory parameters to match the voice.

II: CALIING A PERFORIAHCE GEHORY CARTRILGE (fig. 57)
(a) Turri all ODD selectors OFF.
(b) Insert the PERFORHANCE MEHORY cartriage into cartricige slct h.

* If the PERFORMANCE MEMORY cartridge is

Fig. 56. Calling Internal Performance Memory
Select voice memory positions
which are to be combined.

回
(b)

Insert voice memory cartridges (when changing performance which accesses voice memory cartridge).

Fig. 57. Calling Cartridge Performance Memory

Select voice to which effects are to be added.

Set cartridge switch to on while holding down bank or voice switch.

Insert performance memory cartridge in A.
insertec into cartricige slot B the "***ERROR*** Cartricige not ready!" message will be displayed when the following operation is performed.

* When calling data from a RAH cartriage to be edited and returned to the same cartricige, make sure that the cartriage memory protect switch is OFF before inserting tre cartridge.
(c) Hold a PERFORMANCE MEMORY bank switch or PERFORLAANCE \& VOICE switch ciown and press the CARTRIDGE switch.
* If a perforiflice iehory or perforhince \& VOICE switch is not held, or it is reieased bef ore pressing the CARTRIDGE switch, the "**ERROR** Cartridge format conflict!" message will be displayed. In this case return to step (c).
* If a VOICE HLHORY CARTRIDGE is inserteä tine "**ERROR** Cartridge format conflict!" message will be displayed.
(d) Using the PERFORMANCE MEMORY Or VOICE MEHORY buttons, select the target voice to which the effects will be applied.
* VOICE $\lim H$ Ry data can be called even in the FUNCTION modie. Edited effect diata (PERFORMANCE IMEMORY parameters) which have been combired with voice data can be stored in the PERFORMANCE MEMORY.
* If the perforraince himory bank 5--8 buttons are pressed the "**ERROR** Cartridge format conflict!" riessage will appear momentarily in the middle of the performance name ciisplay, or the "**ERROR** Cartriage not ready!" message will be displayed in the channel B voice name display. In this case the effect ciata only will oe called, and voice data will not be assignea the voice memory data previously called into the buffer will ve applied). This is because the cartridge ana internal PERFORMANCE hemory data are the same. In banks 5--8, VOICE MEMORY CARTRIDGES will be assigneci for both channels A Aild E. In banks 5--8 it is also possible to disengage cartriage assignment, re-select an internal VOICE MEMORY and comivine it with effects.
* While using a performance mehory CARTRIEGE it is not possible to call data frof a VOICE MEAORY CARTRIDGE in channel A.
** Contiruea in "Siltcelilvg to rine FUNCTION MODE AND EIJTERING DATA".
(3) SUITCHING TO PHic FUNCIION HODE AND ENTERING DATA (fig. 58)
(e) Use the FUNCTION switch to switch to the FUNCTION mode. In this state tre PERFORHALICE HEHORY/FURCTION switches can be used to call the FUNCTIOA HODE FUNCTIONS.
(E) Respond to the process prompts shown on trie LCD cisplay usirig the DATA EITRY section.
* In the FUilCTION mode just about all parameters can be applied indepenciently to channels A anc: B. The channel will automatically be selected and indictec on the LCD display.
* The LCD display will read "FUNCTION 1 A
 59).
* "l" shows the position of the parameter (in this case, bank 1). "A" incicates the tone generator channel (in this case channel A).
* "mevuUul>VVVV" are the parameter abbreviations. The double cursor shows trie selected parameter.
* "WWWN" is a parameter or control prompt. "XX-YY" is the data range and "Z2" is the data.
* In most of the PERFORLIANCE MEHORY/FUNCTION switches, a single switch will have four cifferent functions (jobs). Each time the switch is pressed the next function is called. The "job" order for the switches is printed to the right of the control panel (fig. 60).
* When the power is initially turned on, the upper-row number 1 (MASTER TUNE) parameter is automatically selected (data set before the power was turned OFF is retaine ${ }^{\text {a }}$).
(g) After performing the operation for one channel, switch to the other channel and repeat the operation. Channels can be switcheci by pressing a VOICE MEMORY bank or voice switch of the cesired channel.
Fig. 58. Switching to Function Mode and Entering Data

Fig. 59. Parameter position. Sound source channel. -Short title ot parameter.

Fig. 60. Function Job Table

(4) STORING FUNCTION DATA

Parameters set in the FUNCTION mode can be stored in the PERFORMANCE HEMORY. However, only PERFORIAHCE HEHORY parameters can be stored. For this operation, four processes are possible according to the FUNCTION mode control processes I--IV. We'll describe
these in two groups. I and II are used when re-storing data back into the original memory position. III and IV are used when storing data into a new position.

* When the power is initially turred ON, the internal memory protect system is automatically activated, preventinc accidental erasure of the memory. The internal menory protect function must be turned OFF before a STORE operation.
* When a STORE operation is performeú, data originally in the STORE
destination position is eraseci. If it is necessary to save such data, it should be storeci in an exterrial RAM cartridge. \rightarrow P. 45
* Only a far cartridge that h.as been formatted for PERFORIAANCE HEMORY (format=01) can be usedi. \rightarrow P. 45

I-II: RE-STORING DATA IN THE ORIGINAL IIEHORY POSITION (fig. 61)

When editing PERFORHANCE MEMORY data and re-storing it in the original memory location, the STORE ALL function is used.
(h) In orcier to turn OFF the memory protect function, press button 6 in the lower row (MEMORY MANAGEMENT) to call the memory protect write function.
(i) The LCD display will read "Internal memory write protect ON". Press the DATA EIJTRY section NO button to turn write protect OFF.

* If STORE is attenpted without turring

Fig. 61. Restoring Original Performance Memory

OFF protect memory write, the
"**ERROR** V-protecteci" message will be displayed.
(j) Switch to the STORE mode anc trie "STORE ALL FROH >> CURRENT EDITING TO >> CURREIT SELECTED" message will be aisplayed.

* It is not possiole to write data to a ROM cartridge. It is possible, however, to call aata from a ROR: cartridge into the buffer, and store it in the internal menory using the STORE PERFORNANCE function, or into a RAM cartridge. $\quad \rightarrow$ III-IV
* In the case of data called from a RMM PERFORAANCE CARTRIDGE to be edited, the STORE ALL function can be used to return the edited data to the same position in the RAM cartricge.
(k) Press the DATA ENTRY YES button to begin the STORE operation.
* When storing re-storing data within a RAM cartridige, be sure that the CARTRIDGE switch is ON before storing.

III-IV: STORING TO A NEN PERFORMANCE HEMORY LOCATION (fig. 62)

When storing to a new PERFORHANCE MEHORY position or when moving PERFORHANCE HEHORY data between the interral memory anci a cartridge, use the STORE PERFORHANCE function.
(h) Call FROFECT HELORY WRITE.
(i) Press the DATA ENTRY NO button to turn OFF the memory protect function. $-I(h)(i)$
(j) Switch to the STORE mode and press the DiTA ENTRY NO button. This causes the "STORE PERFORMANCE FROM >> CURRENT XXXX TO >>INT Pl-l XXXX" message to be displayed, indicating that the STORE PERFORLANCE function has been callec.

* The STORE PERFORMANCE function works only with the PERFORMANCE HEMORY. \rightarrow P. 53
* The "INT Pl-l" portion of the display is the memory position, and "XXXX" is the performance name.
* When combirirg PERFORMANCE HEHORY CARTRIDGE data with internal VOICE MEHORY-data, and storig he combination in the internal performance henory, first call the cartridge data into the PERFORMANCE EDIT BUFFER, then select the desired VOICE MEHORY number, and finally use the STORE PERFORIANC function.
* If tre PERFORMANCE HEMORY 5--8 are selected with the performance memory in

Fig. 62. Storing New Performance Memory

the initial shipped conaition (prior to any editing), PERFORHANCE MEHORY Cartridege access is autonatically selected when STORE PERFORMANCE is called.
(k) When a new memory position is selected using the PERFORMANCE $A E M O R Y$ Dank switches anc PERFORIALICE \& VOICE switches, the selected position is displayed following the "TO" portion of the LCD display.

* When movinc data iron a cartricige to the internal memory, set the ciestination menory position after turning the CARTRIDGE switch OFF.
* When movirg ciata from the interral memory to a RAli cartriage, select the destination position when tre Cartricge switch is OH.
(1) Fress the Drta miray yes button to begin the store operation.
* A Rinh cartridge formatted for PERFORIANCE MEHORY (format=0l) must de used. If a cartridge for VOICE HEHORY (format $=00$) the "**ERROR** R/W error!" message will be displayed, anc tree STORE operation will be terminated. \rightarrow p. 46

5-3 PERFORMANCE MEMORY PARAMETERS

Parameters which can be stored in the Perforiatice hemory include the FUNCTION COMTROL (PEREORMANCE HEMORY/FUNCTION section upper-row switcres 2--8) parameters which affect all operators simultaneously, the KEY IND. AFTER (PERFORMAHCE HEHORY/FUNCHION section lower-row switches l--3) parameters which are inciependently programaable for each operator, KEY ASSIGiv hODE, VOICE HEHORY anc Cartridge switches.

* The PERFORIAANCE HEliORY parameter data still resicies in the perforiailice edit BUFFER after the FUNCTION mode has been exitec. If the PERFORi:NitCE HEHORY is called a second time, the previous data in the PERFORIAAMCE EDIT BUFFER is erased. If the data in the PERFORNAIJCE EDIT BUFFER shoulc de saved, use the STORE FUNCTION (no function is available to recall aata in the PERFORHAINCE EDIT BUFFER.

MASTER TUNE (fig. 63)
(1) BANK 1
(F1)
All the tuning functicns are provicied here. This switch includes the HASTER TUNE and DUAL I!ODE. DETUNE "jobs".

Job l - HASTER TULNE : -63 -- +63
This is the master tuning function. It affects both channels A and B simultaneously.

* liascer tune parameters can not be stored in the PERFORHANCE HEMORY.
* The haster tunt function is completely inciependent from all other functions, and affects all voices in the same way.
nister tune data remains as programmed until it is re-progranned using the FUNCTION mode.
* Data range is froni -63 to +63 . When set at +00 A 3 is the standard 440 Hz reference frecuency. At -63 the overall keyboatd pitch is lowered by -75 cents ($3 / 4$ semitone). At +63 thie pitch is raised by 75 cents ($3 / 4$ semitone).
* The LCD display will reaa "FUACTIOll 1 ■ ${ }^{(n T U N} \gg$ DTUN Haster tuning XKX". "XXX" is the tuninc data.
* The haster tune function does not affect operators which are set to the FIXED FREQUENCY mode.

Job 2 - DUAL hODE DETUNE : 0--15
This function causes a difference in the pitch of channels A_{1} and B when the XEY ASSIGN $H O D E$ is set to DUAL. This results in a chorlus-like effect. The dUAL HODE DETUNE Function affects both channels A and B.

* Data rancje is $0--15$. At 0 the functicn is OFF, and at 15 the greatest amount of dietune is achieved (at C3, the pitch difference is approximately 25 cents $=$ 1/4 semitone).
* When DUAL iHODE DETUME is used, the pitch of channel A is increased while the pitch of channel B is decreasea correspondingly.
* The LCD display will reac "FUNCTION 1 MTUNE DTUN Dual mode detuning (0--15) $X X " . ~ " X X "$ is the data.
* This function can be set independently of the EDIT mode OSCILLATOR DETUNE function.
* This function will not work if the KEY ASSIGN HODE is set to SINGLE or SPLIT.
* This function will not work with oscillators that are set to the FIXED FREQUENCY mode.

FUNCTIOL COHTRROL (fig. 63)
(2) BANK 2 (F2)

This button has two jobs: POLY/MONO and SOURCE SELECT.

Job 1 - FOLY/MOHC

This sets the note output mode
(polyphonic/monophonic).

Fig. 63. Performance Memory Parameters

 Master tune. Function control.

* When set to the poly mode, polyphonic note output is possiole (when the liey ASS IGN HODE is set to SINGLE a maximum of 32 simultaneous output notes is possible. SPLIT $=16+16$ simultaneous output notes. DuAL $=10$ sinultaneous output notes).
* In the hoinc mocie the keyboare functions as a last-note-priority monophonic keyboard. If one key is hela and a higher key is pressed, the higher note will take pricrity (will be output). In the same way, if a note is held and a lower key is pressed, the lower note will take priority.
* The cisplay will readi "FUNCTION 2 a ■ $\begin{aligned} & \text { EPMOD }\end{aligned}$ >SRC Polyphonic/Ionophonic selector $X X X X$ ". "XXXX" is the POLY/HONO status.
* The way in which portamento affects the POLY and hono mocies is different.
* The POLY or hONO mode status oi a voice can be checked in the PLAY node voice name display.

Job 2 - SOURCE SELLC'I : 0--16
This function selects the DXI Fir tone generator control source. Fi; tone generator control can be derived not only from the DKl keyboarc, but via the rear-panel GIDI connector as well.

* Data rance is $0-16$. When set to 0 the DXl keyboard is selected. When set to l--16 the corresponding hilif receiving channel is selected (fig. 64). \rightarrow P. 61
* If the (18) ferforialice \& VOICE button number 7 (OMNI HODE) is turned OFF, the DKl keyboarć will decome ināctive if SOURCE SELECT is set to l--16. \rightarrow P. 48
* rie lCD ciispiay will reac "FUNCTIOH 2A > PHOD \quad mSRC Source Select ($0=$ int KBD, $1--16=1 \mathrm{II}$) XX " " XX " is the selectec channel.
* In the plry mocie voice nume ciisplay the SOURCE SELECT data is shown as $" S R C=\pi X "$ 。
(3) Bailk 3 (F3)

This incorporates the 2 pirch bend related jobs: PITCH BEND RANGE and PITCH BEND STEP.

Jod 1 - fitce bend range : 0--12
Controls the amount of pitch variation
introaucea by the PITCE BEND WHEEL (fig. 81).

Fig. 64. Source Select
Fig. 65. Pitch Bend Wheel

* Data range is 0--12. 0=Off. Nach increment corresponcis to a semitone of pitch variaticn. at 12 a ± 1 octâve (± 1200 cent) variation is possible.
* The LCD aisplay will reag "FUiJCTION 3A \square ■ PiR \gg PLS Pitco bend range ($0--12$ seailone) $X X$ ". "XX" is the cacta.
* PITCH BELD RANGE will not function if PITC: Bfud step is set from l--12. In this case the range is set at $\$ 1$ octave.

JOD 2 - PITCE BEND STEP : 0--12
Rather than a continuous pitch bend effect, tnis creates a step-wise pitch benc effect.

* The pitcin bend range in the step beno nocie is fixed at l octave.
* Data range is $0--12$. $0=$ normal pitch Denctmode. Each increment (1--12) increases the step interval by 100 cents (l semitone). At 12 a singie l-octave step is produced.
* The LCD aisplay will reáa "FUNCTIOil 3A \gg PBREMBS Pitch bend step ($0--12$ semitone) $X X "$ " $\mathrm{XX"}$ is the data.

(4) BANK 4 (F4)

This includes the \& PORTAifNTO related functions-- PORTAMENTO/GL ISSAIJDO, PORTAMENTO : ZODE, PEDAL ASSIG:, PORTAMENTO TIME.

Joi 1 - PORTAHENTO/GLISSANDO : PORT/GLIS
Sets the PORTAMEN'O (continuous pitch variation) or GLISSANDO (step-wise pitch variation) mocie. This is a master control for the PORTALEDTO TIHE and PORTAHENTC SLIDER controls.

* The LCD ciisplay will reac "FUNCTION $\angle A$ - \quad GLIS \gg PORI \gg PASiJ \gg P'IIi Portamento/Glissancio (PORT/GLIS) XXXX". "XXXX" is the PORT/GLIS status.

JoL 2 - PORTAMENSO HODE
This is the master PORTALHETO select function. Both the PORTAMENTO "IME and PORTAMENTO SLIDER controlled effects are switchea simultaneousily. However, the effect will also be switchea by the bank 2 POLY/iONO selector. In the POLY mode functions (1) and (2) below are available, and in the molve mocie iunctions (3) and (4) are availabie.

* In the POLY liocie
(1) SUSTAIN PITCH RETAIN

Sustain permits holcinc trie pitch of presseci keys up to the inaximuail numiver of DKl output notes $\mathrm{NL}=16$, SPLIT $=$ 16+16. SINGLE =32). For example, one note can be held in sustain while a suosecuent note is played with the portamento criect.
(2) SUSTAIM PITCi: FOLLON All notes playea portamento to a subsecuently playea note.

* In the iono rocie

(3) FIHGERED PORTAHELTIO

Portamento only occurs if a key is hela while a subsequent key is played (legato firm). This is useful for recreating the effect of guitar hammer-on and pull-off techniques, or wood bass glissancio effects.

(4) FULL TIHE PORTAIIENTO

A "conventicnal" monophonic portamento effect.

* The LCD display will reao mukctioid $4 A$ >>GLIS \quad PORi』>>PASN>>PTIH Portamento mone $X X X X X X$ " "XXXXXX" is the selected effect.

JOL 3 - PEDAL ASSIGL: ON/CFF

Turns portamento control via the PORTAliEnTo SLIDER at the left sicie of the DKl panel. and the rear-panel FOOT SW ON or OFF.

* When Oit the PORTADizity SLIDER can be used to set portamento time, and the portamento eifect can be turned on or off using the foot switch connectd to ti.e FCOT SW jack (FC-4 or FC-5 icot switch).
* When ORF, neither the PORTALEHGO SLIDEF or rear-panel FOOT SW will function.
* The portamento effect is programmea when the PORTAilento TIHE function, Delcw, is set, regarciless of the PEDAL ASSIGII state.
* The LCD display will reac meunction $4 A$
 peazl a kno' assign $\mathrm{XXX}^{\prime \prime}$ " XXX " indicates the ON/OFF state.

Job 4 - PORTAMEHTO ©IILE : 0--99
Sets the portamento or glissando speed. This permits the portamento effect to je set regardless of the PORTAMENTO SLIDER and FOOT SW.

* Data range is 0--99. 0=0FF. At 99 the slowest (longest) portamento is produced (approximately 19 seconcis from Cl to C6).
* When PEDAL ASSIGil is OH, data can be entered using the PORTAMENTO SLIDER as well as the DATA ENTRY section.
* The LCD display will read munction 4A >>GLIS > ${ }^{\text {PORM }}$ >PASN time (0-99) XX " " XX " is the data.
(5) BANK 5 (F5)

This includes the 3 connector related functions--OUTPUT LEVEL ATTENUATE, PROG. OUT ASS IGII, and SUSTAIN PEDAL ASSIGN.

Job 1 - OUTPUT LEVEL ATTENUATE : 0--7
This is the output level attenuctor which permits adjusting the level of the DXl output signal. This is particularly useful for compensating for indiviciual voice level variations caused by the REY VELOCITY SENSITIVITY, AFTER TOUCH, and KEY INDIV. AFTER TOUCH settincs.

* The data range is $0--7.7$ is the normal setting (100\%). At 0 output is OFF (0%) and no sound will be output. The amount of attenuation for each
setting is given in the following chart:

DATA	0	1	2	3	4	5	6	7
LEVEL	0%	2%	4%	8%	15%	30%	54%	100%

The LCD ciisplay will reac "FUACTIOA 5h E.ATN>>PRGO>SSUSP Audio output level attenuator ($0-7$) \because ". " $\mathrm{X"}$ " is the data.

Job 2 - PROG. OUT ASSIG! : ON/OFF
Turns the PKOGRAM OUTPUT (mono mix of channels A and $B)$ ON or OFF.

* The output siçal consists of channels $A+B$ only when both channels are Oh.
* Tine unbalanced phone jack and balanced XLR connector are turned ON/OFF sinul taneously.
* The A and B output connectors are ON at all times, regarcless of the state of the PROG. OUT ASSIGN data.
* The LCD display will read "functiols 5A
 XXX". "XXX" is the OH/OFF status.

Job 3 - SUSTAIN PEDAL ASSIGN : ON/OFF
This turns the sustain footswitch connected to the SUSTAIN teriinal OH or OFF.

* When ON, the sustain effect can be controlled via a footswitch (FC-4 or FC-5) connected to the rear-panel SUSTAIid connector. When OFF the SUSTAIN foot switch will not function.
* The LCD disiflay will read "fuidCTION 5i >>ATN>>PRGOUSUSP Sustain pedal assign XXX". "XXX" is the OH/OFF statcis.
* The sustain effect is equivalent to the key-on state, producing a sustain level according to the setting of the EG. When $L 3$ is set at 1 or higher, for example, the $L 3$ level is held after it is reached via R3. If L 3 is set to 0 . the sustain sound consists of a decay at R3. No sustain will be produced if $L 3=0$ and $R 3=99$. \rightarrow P. 2
(6). BANK 6 (F6)

This determines the operation of the MODULATION WHEEL and FOOT CONTROLLER, and incorporates the 4 jobs--HOD. WHEEL SENSITIVITY, MOD. WHEEL ASSIGH, FOOT CONT. SENSITIVITY, and FOOT CONT. ASSIGH.

* In the DXI, the HODULATION WHEEL anci FOOT COHTROLLER can be useci to apply vibrato (pitch modulation), tremolo (carrier amplitude modulation), wow (modulator amplitude modulation) effects using LFO modulation, and brilliance (modulator EG BIAS) or volume (carrier EG BIAS) control (fig. 66).
* The hodulation wheel is located to the left of the keyboard. The least mociulation is applied (0) with the wheel fully toward the operator, and the greatest modulation depth is achieved with the wheel rolled fully away from the operator.
* The foot controller (FC-3A) is

Fig. 66. LFO Modulation Control Function

MODULATION WHEEL

FOOT CONTROL

BREATH CONTROL

Each of the four controllers can regulate effects such as tremolo, vibrato, wow, etc. Also, data setting can be carried out separately by all four controllers.
connected to the rear-panel MODULATIOR: connector.

* Pressing the pedal down increases the depth of the effect.

Job 1 - HOD. WHEEL SENSITIVITY : 0--15
Sets the depth of the effect applied with the MODULATION UHEEL.

* The ciata rance is $0--15$. At 0 the MODULATION WHEEL is OFF. At 15 maximuna erfect variation is achieved.
* The LCD display will read "FUNCTION 6A田 sensitivity $(0-15) \mathrm{XX"}$. $\cdot " \mathrm{XX}$ " is the data.
* If the EDIT mocie AMPL. HODULATIOA SENSITIVITY master parameter is set to 0 for all operators, AhPLITUDE HODULATION (tremolo, wow) and EG BIAS (brilliance, expression) will not function. Also if the EDIT mode PITCi: HODULATION SEIS. master parameter is set to 0 , PITCli ilODULATION (vibrato) will not function. $\rightarrow \boldsymbol{P} .27$

Job 2 - HOD. WHEEL ASSIGN : EBC. AMD. PL:D
Selects the effect to be controlled by the HODULATION WHEEL. PITCH HODULATION, AhPLITUVE hodulation or EG BIAS can we selected.

* The selected function is inciicatec dy a 3-digit display ($0=0$ FF, $1=0 \mathrm{~N}$). Frow tie left digit to the right: ELC (EG BIAS CONTROL), AMD (AMPLI'GUDE hodulation deptii), phid (PITCH MODULATION DEPTH). For example "001" indicates that EBC and AMD are OFF , while PHD is ON.
* When ebc is on and AhPl. HODULATIOis SEHSITIVITY is greater than 1 , applied to a mociulator the result is brililiance control, and appliea to a carrier the result is volume (expression) control.
* When Prid is Oll and PITCH HODULATION SEIS. is greater tian 1, viorao control is possible.
* When abil is Oil and abipl. iodulaticid is greater than l, applied to a carrier the result is trewolo control, anci applied to a modulator the result is wow control.
* Liore tran one effect can we selected at a tine. Pressing the DA'TA EiNTRY YES button consecutively results in the following selection sequence: $000 \Rightarrow 001 \Rightarrow 01 C \Rightarrow 011 \Rightarrow 100 \Rightarrow 101 \Rightarrow 110 \Rightarrow 111$. Pressing the DATA EINTRY iNO button
reverses tris sequence.
* The LCD display will read "FUNCTION 6A \gg ins manal 1 FCS $\gg F C h$ liod. wheel assign (EBC.AMD. Piid) XXX". "XXX" is the effect selection ciata as ciescribed above.

Job 3 - FOOT COIJT. SENSITIVITY : 0--15
Sets the depth of the effect applied witn the FOOT COIJROLLER.

* The data range is $0-15$. At 0 the FOOT COIJTROLLER is OFF. At 15 maximuin. effect variation is achieved.
* The LCD display will reac "runction 6A >>MWS \gg MWA sensitivity ($0-15$) XX". "XX" is the data.
* If the EDIT mode AMPL. BODULARIOH SENSITIVITY master parameter is set to 0 for all eperators, AhPLITUDE HODULATION (tremolo, wow) and EG BIAS (orilliance, expression) will not function. Also if the EDIT mode PITCE. HODULATION SENS. master parameter is set to 0, PITCH HODULATION (vibrato) will not function.

JOD 4 - FOOT CONT. ASSIGN : EBC. AHD. PWM
Selects the effect to de controlled by the FOOT CONTROLLER. PITCH HODULATIOH, AhPLITUDE HOULATION or EG BIAS can de selected.

* The selected runcticn is inciicated by a 3-digit display ($0=0 \mathrm{FF}, \mathrm{l}=\mathrm{ON}$). From the left cigit to the right: EBC (EG BIAS COITROL), ARD (AMPLITUDE MODULATION DEPTHI), PMD (PITCH hODULATION DEPTH).
* The edc, AbD anc Prid effects are the same as Job 2 - MOD. MHEEL ASSIGN.
* liore than one effect can de selected at a time. Pressing the DATA EIJTRY YES wutton consecutively results in the following selection sequence: $000->001->010->011 \rightarrow 100->101->110->111$. Pressing the DATA ENTRY NO button rever ees this secuence.
* The LCD dispiay will read "PuivCTION 62
 assign (EBC.AHD.PHD) XXX". "XXX" $i=$ trie effect selection ciatá as ciescribed above.
* If a foot contrcller is not connectecu and the ELIT mode ARPL. HODULATION SEiSITIVI'Y parameter is set to 3 ior ail carriers, and the FOOT CONT. ASSIGii EBC is Oit, ana roor conm. SEisITIVTHy is set to 15 , no sound will be output.

This decause in the above state the foot controller is set up to be a volume control, and must be pressed to produce sound output.
(7) BANK 7 (F7)

This cietermines the operation of the EREATH COINTROLLER and AFTER TOUCH, and incorporates the 4 jons--brTh CONT. SENSITIVITY, BP'NL CONT. ASSIGN, AFTER TOUCH SENSITIVITY, anc AFTER TOUCH ASSIGL.

* In the DXI, the BREATH CONTROLLER and AFTER TOUCH can be used to apply vibrato (pitch modulation), tremolo (carrier amplitude modulation), wow (modulator amplitude modulation) effects using LFO modulaticn, and brilliance (modulator EG BIAS) or volume (carrier EG BIAS) control (fig. 66).
* The ECl BREATH CONTROLLER is a mouthpiece type device which controls the appropriate effect according to the air pressure (breath pressure) applied to it.
* AFTER TOUCH pernits controlling the depth of the programmed effect according to the pressure applied to the keys after initial key attack..

Jod l- BRIH COIT. SENSITIVIIY: 0--15
Sets the depth of the effect applied with the DREATH CONTROLLER.

* The data range is $0--15$. At 0 the BREATH COHTROLLER is OFF. At 15 maximuin effect variation is achieved.
* The LCD display will reau "FUNCriolj 7A ■ ${ }^{[1} B C S \gg B C A \gg A F S \gg A F A$ breath controlr sensitivity ($0-15$) xx". "XX" is the data.
* If the EDIT mocie AiPL. MODULATION SENSITIVITY master parameter is set to 0 for all operators, AhMPLITUDE HOLULATION (tremolo, wow) ance EG BIAS (orilliance, expression) will not function. Also if the EDIT mode PITCI: HODULATIOH SEHS. master parameter is set to 0 , PITCH HODULATION (vibrato) will not function. \rightarrow P. 27

Job 2 - BRTH CONT. ASSIGH : EBC. AMD. PHD
Selects the effect to we controllec by the BREATH COIJTROLLER. PITCH MODULATION,
 selected.

* The selectea function is indicated by a 3-digit display ($0=0 \mathrm{OFF}, \mathrm{l}=\mathrm{ON}$). From the left wigit to the right: EBC (EG BIAS CONTROL), AMD (AhPLITUDE HODULTAIOH DEPTH), PHD (PIMCH MODULATICH DEPTH). For example "001" incicates that ELC and $A K D$ are OFF, while Pidd is Oin.
* The DBC, AMD and PiD erfects are the same as BAirk 6 Job 2 - HOD. UHEEL ASS IGiv. \rightarrow P. 38
* Rore than one effect can be selected at a time. Pressing the DATA ENTRY YES wutton consecutively results in the following selection sequence: $00 \mathrm{C}->001->010->011->100->1 \mathrm{Cl}->11 \mathrm{C}->111$.

Pressing the DATA EHTRY NO button reverses this sequence.

* The LCD display will read "FUNCTION 7A
 assign (EBC.PAD.AMD) XXX". "XXX" is the erfect selection data as described above.
*If a EREATH COImROLLER is not connected and the EDIT mode AMPL. HODULATION SENSITIVIFY parameter is set to 3 iror all carriers, the BRTH CONT. ASSIGN EEC is ON, and BRTH CONT. SENSITIVITY is set to 15 , no sounci will be output. This is because in the above state, the BREATH CONTRCLLER is set up as a volume control, and must be blown into to produce sound.

Job 3 - AFTER IOUCH SENSITIVITY : 0--15
Sets the depth of the effect applied with AFTER TOUCH.

* The data range is 0--15. At 0 AFIER TOUCH is OFF. At 15 maximum effect variation is achieved.
* The LCD display will read "FUNCTION 7 A > ${ }^{2}$ ECS \gg DCA sensitivity (0-15) XX". "XX" is the data.
* If the EDIT mocie AMPL. HODULATION SENSITIVITY master parameter is set to 0 for all cperators, AMPLITUDE MODULATION (tremolo, wow) and EG Bias (brilliance, expression) will not function. Also if the EDIT mode PITCH HODULATION SENS. master parameter is set to 0, PITCH HODULATION (vibrato) will not function.

Job 4 - AFTER TOUCH ASSIGN : EBC. AHD. PHI
Selects the effect to de controlled by AFTER TOUCH. PITCH HODULATION, AFIPLITUDE
HODULATION or EG BIAS can je selecteci.

* The selected function is indicated by a 3-digit display ($0=0 \mathrm{OF}, \mathrm{l}=\mathrm{OH}$) . FrCh the left digit to the right: EBC (EG BIAS COHMROL), ALD (AMPLITUDE HODULATION DEPTH), PHD (PITCH HODULETIOH DEPTH).
* The EBC, AMD and PHD effects are the same as LAMK 6 you 2 - hod. WHEEL ASSIGN. \rightarrow P. 38
* Hore than one effect can de selected at a time. Pressing the DATA ENTRY YES wutton consecutively results in the following selection sequence: 000->001->016->011->100->101->110->111. Pressing the DATA ENTRY NO button reverses this sequence.
* The LCD aisplay will read "FUiNCTION 7A $\gg B C S \gg B C A \gg A F S$ ■ AFA After touch assign (EBC.PHD.AHD) XXX". "XXX" is the effect selection data as described above.
(8) BAlVK 8 (F8)

Tins includes 3 jobs: the SPLIT POINT function used to determine at which key the keyboarc will be split into channel A and channel B sections, the KEY SHIFT function which shifts the range of the keyiooarg, anci the PERFORHAISE NAlIE function for naming perforiance hmory positicns.

Job 1 - SPLIT POINT : A-1 -- A7
The DKl perrits assigning the channel A and channel B tone generators to different sections of the key Doarci (KEY ASSIGH HODE = SPLIT). The SPLIT POIIT function determines the key at which the keyvoarc is split between the two channels.

* Channel A is assigned to the keyboarc section below (to the left of) the split point, and channel B is assigned to the keyboard section above the split point.
* This will have no eifect if the Key ASSIGN MODE is set to DUAL or SINGLE.
- If a split foint is not programeci, C3 is set as the default split point.
* The SPLIT POIira can be set by pressing the appropriate key, the key name is displayed on the LCD display. The data range is E0-EE6.
* When using the DRTA ENTRY section to input data, the data range is A-1 -A7.
* SPLIT POIidT data can not be altered using the keyboard. If the wrong key is pressea, tre data must be altereci using the DATA ELITRY section, or the SPLIT POIAN functicn must be re-entered.
- If the Data Entry section is usec first, the keyioara can not be used to enter different ciata.
* The SPLIT POINT key name display is based on the reference keywoard pitch. If the KEY SHIFT (below) or EDIT mode KEY TRGIVSPOSE function is used to alter the overall keyooard pitch, the key name display will not corresponci to the actual keyboard pitch.
* The display will reaci "FUNCTICI 8 . DOSPITT>>PKS \gg PHAA Split point (split boarc only $x \times 1!^{\prime \prime}$. "ix" is the data.

Job 2 - KEY SHIFT : +24-- -24
This functions in exactly the sane way as the EDIT mode KEY TRANSPOSE function. It permits transposing the overall pitch of the keyboard. All operators are affected simultaneously.

* The ciata range is +24 to -24. Each increment corresponds to a semitone step. With C3 as the reference pitch, this provides a ± 2 octave transposition range.
* Normally this is set to +00 (reference pitch).
* Data can be set simply by pressing a key on the keyboard. The key which is pressed takes on the reference pitch. (C3), and the rest of the keyboard is transposed accordirigly. \rightarrow p. 28
* Pressing any key nigher than C5 results in a +24 ciata setting, anci pressing any key lower than Cl results in a $\mathbf{- 2 4}$ data setting.
* Data can also be entered using the DATA EIJTRY section.
* KEY SHIFT data can not be altered using the keyboard. If the wrong key is pressec, the data must de altered using the DATA ENTRY section, or the KEY SUIFT function must be re-entered.
* If the DATA ENTRY section is used first, the keyboarc can not be used to enter different data.
* The LCD display will read "FUHCTION ©́a >>SPNT $\mathrm{XX}^{\prime \prime}$. " $\mathrm{XX} \mathrm{X}^{\prime \prime}$ is the data.

Job 3 - PERFORHANCE NAHE : 30 characters
This function permits giving ciata in tl:e PEREORLIANCE HENORY a name of up to 30 characters in length.

* The LCD will read "FUNCTION \&A
 The "DXXXXXXXXX" porticn of the display is the performance name. Characters are enterea one at a time using the cursor (${ }^{\text {(})}$.
* Characters which can be usea for naning voices are printed below the VOICE PARAMETER and VOICE HE:FORY buttons. Pressing a button inputs the corresponciing character which is then displayed at the appropriate position on the LCD cisplay.
* The cursor can be moved using the DATA ElicRy section + anc - buttons (fig. 67).
* In the play nocie, the performance name is displayed on the lower row of the LCD display.
* When using the perforiance naite function, the VOICE HEMORY buttons become the character input buttons, so a different VOICE MEHORY gosition can not ie selected.

Fig. 67. Examples of Characters and Symbols Used for Naming

Fig. 68. Performance Name Display in Play Mode

PERFORMANCE MEMORY \#6-8 *** FM EMSEMBLE	***

KEY IND. AFTER (fig. 63)
This KEy INDIVIDUAL AFTER TOUCH function permits individually setting the pressure response of each key on the keyboarc to control oprtator output level for volume or brilliance variation. Unlike the (7) AFrIER TOUCH function, KEY IHD. AFTER sets the response of each key individually pernitting exceptionally fine expressive control.

* The depth can be set inciepenciently for each operator.
* KEY IND. AFTER data is completely independent from and unaffected by (7) AFTER TOUCH data.
* Operator level is controlled by pressure-sensitive electronic elements incorporated in eack key. Greater key pressure prociuces a higher output level. The effect is the same AFTEF TOUCH EBC (EG BIAS CONTROL).
* Generally, the nignest output level availabie with KEY IMD. AFTER response is equal to the OPERATOR OUTPUT LEVEL setting. However, when TOTAL SEHS ITIVITY cescribed in (9) below anci the OPERATOR DEPTH paraneters describea in (10) anc (ll) below are all set to 15 and AFTER TOUCH SENSITIVITY is set to 0 , peak output level can exceed the OPERATTOR OUTPUT LEVEL setting by a maximum of 6 u B .

(9) PERFORHAITCE \& VOICE 1 (F9)

This button incorporates the KEY INDIVIDUAL AFTER TOUCH parameters: TOTAL SENSITIVITY, DECNI RATE and i?ELEASE RATTE.

Joi 1 - TOTAL SEINSITIVITY : 0--15
Sets tice overall sensitivity of the KEY IND. AF'AER function. All operators are affected sidultaneously.

* The ciata range is 0--15. At 0 KEY ImD. AFTER TOUCH is GFF, and at 15 maximum level variaticn is achieveci.
* Pinis will not function if the Ondiator deprii paraneters cescribec in (10) and (11), below, are all 0.
* The LCD display will reac "FUnCtion $9 A$ - \quad (KTS \gg KDR \gg KRR Key iradiv A.T. sensitivity ($0-15$) XX ". "XX" is the data.

Jô 2 - DLCAY RATE : 0--99
Sets the rate at which the output level cecays arter pressure is released Erom a key to which KEY INDIVIDUAL AFTER TOUCH is appliea (the key is still hela).

* The ciata range is $0--99$. 0 sets the slowest ciecay, and 99 resulte in an immediate drop in level winen key pressure is releaseu (íig. 69).
* Setting a relatively long decay rate prevents level variation due to uneven key pressure while playing long tones, for a more stable effect.
* Setting a fast decay rate permits touch response effects to be used even in rast passaces.
* rine LCD display reacis "PuivCinion 9is $\gg K$ KSm KDR \gg KRR Key indiv. A. T. decay rate ($0-99$) $\mathrm{xX"}$. "XX" is the diata.

Job 3 - RELEASE RATE : 0--99
Deterrines the rate at wincri output level decays after a key is released.

* The cíta rance is $0 \sim-99$. 0 sets the slowest ciecay, anci 99 results in an induciate cirof in level when a $k \in y$ is rèleaseá (fig. 70).

Fig. 69. Decay Rate

* Longer release rate settings result ir: sustain-like effects without using the SUSTAIN footswitch or setting a long EG R4 value.
* The LCD display will read "FUNCTION $9 A$
 rate (0-99) KX ". "XX" is the diata.
(10) PERFORHANCE \& VOICE 2 (Fl0)

Sets the ceptr of the KeY INDIVTEUAL hFTER TOUCH effect for each operator. Applied to a carrier tre result is a level variation, and appliea to a modulator the result is a timbre variaticn. 3 jobs are included: $O P$ 1 DEPTH, OP 2 DEPFIl and OP 3 DEPTH.

Job 1 - OP 1 depth : 0--15
Sets the depth of KEY IMDIVIDUAL AFTER TOUCH for operator 1 .

* The ciata range is $0--15.0=0 \mathrm{FF}$, and 15 results in maximum variation according to the settinc of TOMAL SEASITIVITY. Also, at 15 the DECAY RATE and RELEASE RA'E effects are the strongest.
* This will not function when TOTAL SERSITIVITY is set to 0.
* The LCD display will read "FUNCTION loA - \quad KOPl $>$ (KOP2 \gg KOP3 Key inciv. A.T. OPl depth $(0-15) \mathrm{XX}$. $\mathrm{KX}^{\prime \prime}$ is the data.

Joט 2 - CP 2 DEPTH : $0--15$
Sets the operator 2 depth. Functions the same as OP 1 DEPTH adove.

Joi 3 - OP 3 DEPTA : 0--15
Sets the operator 3 depth. Functions the sane as OP 1 DEPTH above.
(11) PERFORIIAIVCE \& VOICE 3 (Fll)

Sets the ciepth of the kEY INDIVIDUAL AFMER TOUCH effect for each operator. 3 jobs are included: OP 4 DEPTH, OP 5 DEFPi anci OP 6 DEPTH.

JOD 1 - CP 4 DEPTH : 0--15
Sets the operator 4 depth. Functions the same as OP 1 DEPTH above.

Job 2 - OP 5 DEPTH : 0--15
Sets tíe operātor 5 depti. Functions the same as OP 1 DEPTH above.

Job 3 - OP 6 DEPTH : 0--15
Sets the operator 6 depth. Functions the same as OP 1 DEPTH avove.

Fig. 70. Release Rate

(12) VOICE HEHORY (Eig. 71)

It is possible to store VOICE HEMORY data in a PERFORNANCE REMORY location. In this way, the combination of voice data and performance parameters creates a "total" solinci for performance.

Fig. 71. Voice Memory

(13) CARTRIDGE SW (fig. 72)

When a cartricige voice is selected, and when the cartridge voice data is stored in a PERFORiAMCL MEMORY, the OH/CFF status of the CARTRIDGE switch is also menorized.
(14) KEY ASSIGIV $: O D E: S I N G L E / D U A L / S P L I T$ (fig. 72)

The SINGE, DUAL or SPLIT KEY ASSIGN :ODE Can de selected, combined with VOICE liEnORY data anci storea in the PERFORIALICE HEHORY.

* Tine SPLIT POINT for the SPLIT mode is set using the SPLIT POIHT function described in (8) Job l. \rightarrow P. 40
Fig. 72. Cartridge and Key Assign Mode Switches

5.4 MEMORY MANEGEMENT

Host of the DXI functions which deal with the memory -- HEHORY HANAGEMENT -- are accessidie via the PERFORiANCE
HEAORY/FUINCTION Duttons $4-6$ on the lower row. The iEDIORY HAliAGEHENT functions are for memory control only, and can not be memorizeă.

Fig. 73. Memory Management

(15) FERFORIAALCE ¿ VOICE 4 (F12)

This includes the memory management furctions relating to the voice parameters. 4 Jobs are included: COPY OP DATA, SAVE
 RECALL EDIT BUFF.

Job 1 - COPY CP DATA
This function permits copying the data for one operator in a voice to another operator (íig. 74). It is designed to shorten and simplify the voice creation process. COPY OP DATA incorporates 2 Sub-Jobs: COPY E:VELOFE DATA anu COPY OSCILLITGR DATA.

* This function can not be used to copy data ircm one voice to another, or to a different channel.
* COPY ERVELOPE DATA anc COPY OSCILLATOR DATA are callea alternately by pressirig ti:e DATA matry 10 button.
*COPY ENVELOPE DATA (Suj-Job 1)
The 8 EG parameters (Rl--R4/Ll--L4) and 6 KEYBOARD SCALIAG parameters (LEVEL SCALING, L--R DEPMH, L--R CURVE, BREAK POIMT, RATE SCALIIIG DEPTH) are all copied.
* The LCD cisplay will read "FUnCTION 12A - COPY > ${ }^{-1}$ TEHP $>$ INIT $>$ RRCAL Copy envelope data From OPl to OPl OK?".
*COPY OSCILLATUR DATA (Sub-Job 2)
The 4 OSCILLLTOR parameters (iODE, DETUNE, COARES, FIIJE) are all copied.
* The LCD display will read " "FUi;CTION
 oscillator From OPl to OPl OK?".
**The COPY OP DATA process
(a) Call any function other than COPY OP DATA in the FUNCTION mode.
(b) Use OPERATOR SELECT to select the operator fron which you wisn to copy the data.
(c) Select the "ח口copy" display using the PERFORHANCE \& VOICE switch 4.
(a) COPY EAVELOPE DATA is autonatically called. To use COPY OSCILLATOR DATA press the DATA ETTRY NO button.
(e) At triis point both the "From" and "to" portions of the display will point to the originally selected operator.
(f) Select the operator to which the data is to be copied using the OPERATOR SELECT buttons.
(g) The selected destination operator will be shown on the aisplay.
(h) Press the DATA ENTRY YES button to copy the ciata.
(i) The "From OPX" portion of the a isplay now indicates the selected destination operator, and the data is shown on the LED display panel. It is possible to continue copying the same data to other operators in tris way.
* To change the origin operator, return to step (a).

Job 2 - SAVE TEHP. OPERATOR
This function makes it possible to copy operator data from one voice to another, or to a different channel via a special
"temporary" memory (fig. 75). 2 Jobs are incorporated: TEIPORARY SAVE OP DATA and EXTRACT TEAPORARY OP DATA.

* All incividual operator parameters available in the EDIT mode can be copied.
* It is also possible to copy data from one operator to another within the same voice.
* The origir and ciestination operators are not displayed.
* TEHPORARY SAVE OP DATA and EXTRACT TEMPORARY OP DATA can be called alterrately by pressing the DATA ENTRY NO button.
*TELAPORARY SAVE OP DATA (Sub-Job 1)
Stores the selected operator data in a temporary menory (different from the BUFFER): Data stored in the temporary memory is retained until the mEMPORARY SAVE OP DATA function is performed again.
* The LCD áisplay will read "FUNCTIOiN 12A
 :Temporary save OP diata ?".
*EXTRACT TENPORARY OP DATA (Sub-JOO 2)
This copies data from the temporary memory to the operator selected with the OPERATOR SELECT buttons.
* The LCD display will read "FUNCTION 12A $\gg C O P Y \square \square T E I P \gg$ IIJIT \gg RCAL SUBJOB 2 :Extract temporary OP data ?".
**The SAVE TEAPORARY OPERATOR DATA process
(a) Enter the FUNCTION mode and press PERFORALNCE \& VOICE button 4 to call the "■■TEnp" aisplay.
(b) Sub-Job 1 (TEHPORARY SAVE OP DATA) is automatically selectec.

Fig. 74. copy Operator Function

Within same voice.

Fig. 75. Save Temporary Operator Function

(c) Use the OPERATOR SELECT buttons to select the operator from which the data is to be copied.
(d) Press the DATA ENTRY YES button to copy the data to the temporary memory. "+++" will appear following "?" on the display.
(e) Press the DATA ENTRY NO button to switch to Sub-Job 2 (EXTRACT TEMPORARY OP DATA).
(f) Select the copy destination operator using the OPERATOR SELECT buttons.
(g) Press the DATA ENTRY YES key to copy the data.
(h) All EDIT modie parameters on the LED display switch from those originally in the destination operator to those of the origin operator.

* Sub-Job 1 and 2 can be performed separately. Steps (a) through (a) perform Sub-Job 1, and steps (a), (e) and (h) perform Sub-Job 2.

Job 3 - INÍTIALIZE MEHORY

This function sets all VOICE or PERFORHANCE parameters in a voice to an initial state from which an entirely new voice can be created. 2 Sub-Jobs are included:
INITIALIZE VOICE and INITIALIZE PERFORAANCE.

* Initialize Voice and indrialize PERFORLAANCE can be called alternately by pressinc the DATA Eiviri No key.
* Not all parameters are set to 0. The parameters are set for the easiest voice creation.
*INITIALIZE VOICE (Sub-Job 1)
This initializes the VOICE parameters. VOICE parameters in the VOICE EDIT BUFFER are initialized, rather than initializing an actual VOICE HEHORY position.
* To save a voice which has been created using the INITIALIZE VOICE function, it must be stored into the VOICE MEMORY. \rightarrow P. 53
* The EDIT switch lights automatically when INITIALIZE VOICE is called. The EDIT moce is entered simply by turring OFF any FUNCTION switches, ana editing can be commenced.
* The LCD display will read "FUNCTION 12 a
 :Initialize voice edit-buffer?".
* INITIALIZE PERFORILANCE (Sub-Job 2)

This initializes the PERFORHANCE parameters. PERFORAAMCE parameters in the PERFORHANCE EDIT BUFFER are initialized, rather than those in an actucl PERFORIANCE HEHORY
location. \rightarrow P. 44 INITILLIZE PERFORMANCE DATA LISTI

* The LCD display will read "FUNCTION 12A > COPY > $>$ TEMP :Initialize perform edit-buff?".
* To save a voice which has been created using the INITIALIZE PERFORMANCE function, it must be stored into the PERFORHANCE HEHORY. \rightarrow P. 53
**The INITIALIZE MEMORY process
(a) Enter the FONCTION mode and press PERFORMANCE \& VOICE button 4 to call


```
        (b) Sub-Job 1 (INITIALIZE VOICE) is
        automatically selectec.
    (c) Press the DATA EITTRY YES button to
        begin the initialize operation. "Voice
        buff. now initialized!" will appear
        following "SUBJOE l" on ti.e cisplay.
    (d) Press the DATA ENTRY NO button to
        Switch to Sub-Joi 2 (INITIALIZE
        PERFORIIANCE).
    (e) Press the DATA ENTRY YES button to
        begin the initialize operation.
        "Ferformance buff. now initialized!"
        will appear following "SUBJOB 2" on the
        display.
* Sub-Jod 1 anci 2 can de performed separately. Steps (a) through (c) perform Sub-Job 1 , ana steps (a), (a) and (e) periorm Sub-Job 2.
```

- INITIALIZE VOICE DATA LIST

ALCORITHM - PATTERN --	
	FEEDBACK \longrightarrow
CILLATOR	MODE - - - OP 1~OP 6 - F.RATIO
	DETUNE --OP 1~OP $6-0$
	FREQUENCY COARSE - OP 1~OP $6-1.00$
	FREQUENCY FINE - ${ }_{\text {OP }}$ 1~OP $6-1.00$
	RATE . $1 \sim 4$ - OP 1~OP 6 - 99
	LEVEL 1~3-OP 1~OP 6 - 99
	LEVEL $4-$ OP 1~OP $6-0$
PITCH EG	RATE 1~4—— 99
	LEVEL $1 \sim 4 \longrightarrow$ - 50
LEvel scaling	BREAK POINT - OP 1~0P $6-0=\mathrm{A}-1$
	CURVE L•R - OP 1~OP 6--LIN
	DEPTH $\mathrm{L} \cdot \mathrm{R}$ - OP 1~OP $6-0$
RATE SCALING - OP 1~OP $6-0$	
SENSITIVITY - KEY VELOCITY - OP 1~OP 6-0	
AMPL.MODLATION - OP 1~OP $6-0$	
OPERATOR OUTPut leve	- OP 1 - ${ }^{-} 99$
	OP 2~0P 6-0
	WAVE \longrightarrow TRIANGLE
	SPEED - $\longrightarrow 35$
	DELAY -0
	PMI - 0
	PMS - 3
	ATD \longrightarrow - 0
	KEY-SYNC - - ON
OSCILLATOR KEY SYNC	
TRANSEPOSE $\ldots+\ldots$	
VOICE NAYE $\square \square=$ BLANK	
- initialize performance data list	

DUAL MODE DETUNE 0

POLY/MONO	POLY
SOURCE SELECT —— RANGE	$0=$ INT.
PITCH BEND	5
	0

JOE 4 - RECALL EDIT BUFF
If voice parameters in the VOICE EDIT BUFFEf are accicentally lost during an editinc process, this function permits recalling the lost data to the VOICE EDIT juffer.

* If a aifferent VOICE HEHORY button is pressed while ir the COinPARE node, data in the butfer is lost.
* If the EDIT mocie is exited ana the mifilalize voice function is callea, data in the bufier is replaced by the initial voice data.
* The VOICE EDIT BUFFER incorporates a second utility memory in which the lost data is retained. The necall edit 3UFF function recalls this data to the main VOICE EDIT BUFFPR (fig. 76). The data will be completely lost, however, if two accidental cata erasures occur in a row befiore using the RECALL EDIT BUFF function.
* Data lost froin the perforiAnce edit EUFFER can not be recalled.
* 'rhe LCD aisplay will reaci "Function $12 A$ >>COPY>>TEHP>>INIT■ RCAL Recall previous ediit buffer catá OK?"

Fig. 76. Recall Function	PLAY MODE EDIT MODE	Data erase.	RECALL EDIT BUFF
EDIT BUFFER UTILITY	XXXX	XXXX	XXXX
	\uparrow		\downarrow
EDIT BUFFER	XXXX		XXXX
	\uparrow		
VOICE MEMORY	XXXX		

**The RECALL EDIT BUFFER process
(a) Enter the FUNCTION mode and press PERFORIANCE \& VOICE button 4 to call

(b) Press the DATA ENTRY YES button to perfora tine RECALL operation.
(c) The fUNCTION mode is automatically exited anc the EDIT mode is entereci.
(16) PERFOR:iANCE \& VOICE 5 (Fl3)

This includes functicns related to the cartridge nemory. 3 Jobs are incorporated: SAVE TO Cl:RTRIEGE, LOAD FFOA CARTRIDGE and Change forliat cart.

Job 1 - SLAVE TO ChRMRIEGE
This saves all VOICE or PERFORHANCE memory locations to an exterrial cartricige at once (fig. 77). 3 Sub-Jobs are included: SAVE ALL VOICL \bar{A}, gave all voice B and save PERFORHANCE.

* SaVE to cartriegi is only yossible with a RAM cartridge.
* The save hll voice a, save hll vGice b and SAVE PERFORMAMCE functions can be callea secuentially by pressing the DATA ENTRY iNO Dutton.
*Sive all VOICE a (Sub-jou 1)
All channei A VOICE mEMORY data (VOICE
Hiniony al-l through $124-8$) is save to a VOICe RAil CARTRIDGE (FORHAT $=00$) inserted in cartriage slot A.
* The LCD display will read "FUNCiION 13 [日GAVE \gg LOÃD \gg FCRii Save all voices. írom INT-À into EXT-A?".
*SAVE aLL VOICE B (Sub-Job 2)
All channel E VOICE mEHORY ciata (VOICE ilidiony Bl-l through B4-8) is save to a RAif cartridge insertea in cartriage slot B.
* The LCD display will read "FUNCTION 13 ■ SAVE \gg LOAD \gg FORi: Save all voices. rom INT-B into EX'T-B?".
*SAVE PERFORiANCL (Sub-jó 3)
All internal PERFORNANCE HENORY data (PERFORAMCE AERORY Pl-1 thrcugh P8-8) is save to a PERFORIIANCE RAi CARTRIDGE (FORIAAT

Fig. 77. Save/Load Function

= 01) inserted in cartridge slct $\hat{\text { A. }}$.

* The LCD display will read "FUNCTION 13 - \quad SAVE \gg LOAD \gg FORi Save performance menories into EXT-A?".
**The SIVE TO CFRTRILGE process
(a) Switch to the FUNCTION mode, anci press the PERFRAAICE \& VOICE button 5 to call the "ח्mesAVE" display.
(b) The SAVE ALL VOICE if function is automatically selected. SAVE ALL VOICE B and SAVE perforimice can be selected sequentially using the DATA EIJTRY ivo button.
* If a YeS/NO response to the control prompts in steps (c) through (g) below is entered incorrectly, the process will revert to step (b) above and the next Sub-Job will be selectec.
(c) Press the DA'PA ENTRY YES button to continue on to the folloing operations.
(d) "Change your mind?" will appear on the lower row of the display. Press the DATA ENTRY iNO button to continue.
(e) "Insert Cartridge in X " will appear on the lower row of the display. Insert the cartridge.
* When using SAVE ALE VOICE A or SAVE ALL VOICE B a cartridge formatted for VOICE HEHORY (FORNAT $=00$) must be inserted. When using SAVE PERFORADACE, a cartriage formatted for PERFORIAANCE REIMORY (FCRiAT $=01$) must be inserted. As shipped, RAi cartridges are initially formatted for VOICE herory (FORIAT $=00$). Use the CHAIIGE CART. FORiAT function to change to the PERFONLANCE LEHORY format as required. \rightarrow P. 46
* When using SAVE all VoICE B, insert the cartridge into cartridge slot B.
* RAR cartriages have a memory protect switch. Be sure to turn this switch OFF before inserting the cartricige.
(f) Press the DATA ENTRY YES button to go on to the next step.
(g) The display will read "Ready ?". Press the DATA EHTRY YES button again to begin the actual SAVE TO CARTRIDGE operation.
* If the Yes outton is pressed and a cartridge is not inserted, the "**ZRROR** Cartridge not ready!" message will appear.
* If saving is attemptea to a cartricige with the wrong format, the "**ERROR** Cartricige format conflict!" message will appear.
* If save is attempted to a roll cartridge, or to a RAif cartridge with the memory protect switch on, the "**ERROR** Cartridge write protected!" message will appear.
(h) When the SAVE operation is initiated, the "iriting >**** " message will appear.
(i) When the SAVE operation is complete the "***Save completeci!***" message will appear.
* If the cartridige is removea before the SAVE operation is complete, the "**ERROR** Cartriăge read/write error!" message will appear. In this case, only a portion of tie ciata will have
been saved.
* After a succesful Save operation, be sure to turn the cartridge menory switch back Oil to prevent accicental erasure.

Job 2 - LOAD FROI: CARTRIDGE

This loads all VOICE or PERFORHANCE memory data from an external cartridge into the internal memory at once (fig. 93). 3 Sub-Jobs are included: LOAD ALL VOICE A, LOAD ALL VOICE B and LOAD PERFORIAAVCE.

* The LOAD all voice A, load all voice a and LOAD PERFORIANCE functions can be called sequentially by pressing the DATA ENTRY NO button.
*LOAL ALL VOICE A (Sud-Job 1)
All channel A VOICE HEHORY data (VOICE HEHORY Al-1 thrcugh $A 4-\delta$) is loadea from a VOICE HEMORY CARTRIDGE inserted in cartridge slot A.
* The LCD display will read "FUNCTION 13 >>SAVE@LOAD \gg FORA Load all voices. from ExT-A into INT-A?".
*LOAD ALL VOICE B (Sub-Job 2)
All channel D VOICE HEMORY data (VOICE HEHORY Bl-1 through B4-8) is loaded from a VOICE HEHORY CARTRIDGE inserted in cartricige slot B.
* The LCD display will read "FUNCTION 13
 from EXT-i into INT-B?".
*LOAD PERFORHANCE (Sub-Job 3)
All internal PERFORiAANCE MEHORY data (PERFORHANCE MEHORY Pl-1 through P8-8) is loaded froin a PERFORHANCE HEWORY CARTRIDGE inserted in cartridge slot A.
* The LCD display will read "FUNCTION 13 >>SAVE LOAD ${ }^{-1}$ - FORH Load performance memories Eron EXT-A?".

**The LOAD FROM CARTRIDGE process

(a) Switch to the FUNCTION mode, andi press the PERFRiAANCE \& VOICE button 6 to call the PROTECT HEHORY WRITE function.
(b) Press the DATA ENTRY No button to turn PROTECT HEHORY WRITE OFF.
(c) Press the PERFORFANCE \& VOICE switch 5 to call the "mondon" display.
(d) The LOAD ALL VOICE A function is automatically selected. LOAD ALL VOICE B and LOAD PERFORIANCE can be selected sequentially using the DATA ENTRY NO button.

* If a YES/NO response to the control prompts in steps (e) through (i) below is entered incorrectly, the process will revert to step (d) above and the next Sub-Job will be selected.
(e) Press the DATA ENTRY YES button to continue on to the following ste?.
(f) "Change your mind?" will appear on the lower row of the display. Press the DATA ENTRY 10 button to continue.
(g) "Insert Cartridge in A" will appear
on the lower row of the display. Insert the cartridge.
* When using LOAD ALL VOICE E , insert the cartridge into cartricige slct E .
(h) Press the DATA ENTRY YES button to go on to the next step.
(i) The display will read "Ready ?". Press the DATA ZiATRY YES button again to begin the actual LOAD FROH CARTRIDGE operation.
* If the YES button is pressed and a cartridge is not insertea, the "**ERPOR** Cartridige not reaciy!" message will appear.
* If loading is attempted from a cartridge with the wrong format, the "**ERROR** Cartridige format conflict!" message will appear.
* If load is attempted with the pROTECT HEHORY URITE function ON, the "**ERROR** Eemory write protected!" message will appear.
(j) When the LOAD operation is complete the "***Load completed!***" message will appear.

Job 3 CHANGE CART. FORHAT
In the DXI the same external RAM cartridges are used for VOICE HEMORY and PERFORMAHCE irEMORY storage. The CHANGE CART. FORiAFT function "labels" the cartridige for cither VOICE or PERFORMANCE memory, so the DKl car $r \in c o g n i z e$ the cartridge type and access it properly. When this function is used, all data that was previously in the cartridige is erased.

* The LCD display will read "FUNCTION 13
 (A). Type $x X$ to ??. OK?".
* The format type must be entered as a two-digit value. 00 is for VOICE HEMORY and 01 is for PERFORHANCE MEMORY.
* Values other than 00 and 01 will be accepted, but the resulting format will be meaningless to the DXI.
* Rair cartridges are initially formattea for VOICE MEMORY (FORLIAT= 00).
* The format of the supplied ROH cartridges can not be altered.
* The cartridge to be formatted must be inserted into cartridge slct f.
* Using the CHANGE CART. FORMAT function completely erases any data that is in the cartridge. Unlike the INITIALIZE HEHORY and CLEAR FLL HEHEORY functions, the CHAINGE CART. FORHAT function leaves all parameters set at their minimum value.
**The CHANGE CART. FORHAT process
(a) Insert the RAM cartridge to be formatted into cartricige slot A.
* Be sure to turn the RAM cartridge memory protect switch OFF before inserting the cartridge.
(b) Switch to the FUNCTION mode anci press the PERFORMANCE \& VOICE button 5 to call the "国■ORi"" DISPLAY.
(c) The "Type $X x$ " portion of the display will indicate the current format of the inserted cartridge.
(a) Use the VOICE PARAidener switches to enter the rew format number. This will appear in the "??" portion of thie cisplay.
(e) Press the DíTA mitRy Yes button to go on to the next step.
* A NO response can not be entered at this point.
* If a yes/mo response is entered incorrectily in steps (f)--(i), the FUNCTION mode will be exited and the previous mode will be re-entered.
(i) The display will read "You lose original data. Are you sure?". Press the DATA ENTRY YES button to confirm.
(g) The display recuests a seconci confirmation: "New format number is XX. OK?". Press the DATA EMTRY YES button to continue.
* "XX" is the new format number.
* If a format number is not entered in step (c), the diefault format rumber 00 is assumed.
(n$)$ The cartridge will then read "Execute formatting of cartridge A. OK?".
(i) Press the YES button to execute the actual iormatting process.
* If tire yes button is pressed and no cartridge is inserted, the "**ERROR** Cartriage not reaciy!" message will appear.
* If r̈ormatting of a ROHi cartridige is attempted, or the RA: cartridge menory vrotect switch is ON, the "**ERROR** Cartriage write protectea!" message will appear.
(j) Luring tise formatting process, the ciplay will read "FORHAT >***....." .
(k) When formatting is completeu, the "***Format completed!***" message will appear.
* If tine cartricige is removec betore the format process is completed the "**ERROR** Cartricige read/write error!" message will appear.
(17) PERFORiAA:CE \& VOICE 6 (Fl4)

This includes the remaining 3 HEWORY
hamigemmen jows: FeOmect heamory wilte, CLEAR ALL NE?ORY, aná CHECK BATTERY.
jot 1 - PROTECT MDHORY WRITE
When this Function is OiJ, the internal VOICE devory and perforlance immory are write-protected. The ON/OFF status is set using the DATA EAFRY section.

* This must be turned OFF before using any Srore funcricn.
* Hust be turned OFF to use the (16) LOAD Froí: Clirtrite function.
* PROTECT $\operatorname{li} E \mathrm{I}$ ORY WRITE is automatically turneu ol every time power to the dxl is turned Ol.
* The LCD display will reac "FUNCTION l4A ■ \quad MPRT \gg CLR $\gg B C H K$ Internal memory write protect XX ". "XX" is the ON/CFF status.

Job 2 - CLEAR aLL hemory
This function initializes all the internal VOICE HEHORY and PERFORFAMCE MEMORY data at once.

* Using this function completely erases all data in memory and sets all paremeters to their initial state. Clearing only the VOICE HEMORY or PERFORAAMCE HEHORY, or a specified memory location is not possible.
* Cartridge data can not je erased using this function.
* The LCD display will read "FUNCTIOR 14π

**The Clefr all herory process
(a) Switch to the FUNCTION mode, and use the PERFORiAANCE \& VOICE button 6 to call the "■-CLR" display.
(b) Press the DATA ENTRY Y®S button to go on to the next step.
* If $N O$ is entered, the FUNCTION mode is exited and the previous mode is re-entered.
* If a YES/NO response to tree control prompts in steps (c) through (g) below is entered incorrectly, the FUNCTION mode is exited and the previous mode is re-entered.
(c) The display will read "You lose all ciata. OK?". Press YES to confirm.
(d) "Change your minci?" will appear on the display. Press the DATA ENTRY 110 button to continue.
(e) "Are you sure ?" will appear on the display. Press Yes to confirm and begin the actual CLEAR process.
(f) When the CLEAR fll filiory operation is complete the "***All memory now erasec!***" message will appear.
(g) If the FUHCTION switch is turned OFF or the DATA EITMRY HO button is pressed, the previous mode is entered.
* Anotiler functicn within the Fulscrion mode can also be selected.

Job 3 - CHECF. DATYERY

This function checks the voltage of the battery which backs up the internal VOICE MEMORY and PERFORMANCE MEHORY.

* The LCD display will read "FUNCTION 14A
 "XX" is the battery voltage. Any voltage higher than 2.2 volts is "normal".
* An exceptionally lonç-life vattery nas Deen used, however, if the battery voltage does cirop below 2.2 volts the "***CAUTIOIJ*** change battery!" message will be aisplayea. In this case the battery needs to be replaced. However, a special type of battery is used and replacement iUUST BE DONE AT A YAMfilia DEALER. Contact your nearest Yamaha dealer when battery replacement becones necessary.
* Battery voltage is greater than 3.0 volts when initially shippecu.

5-5 MIDI INFO. CONTROL (fig. 78)

Functions which cetermine the operaticn of the rear-panel hidI connector are incorpurated in PERFORHAMCE \& VOICE switches 7 and 8 on the lower row of the PERFORiANCE MEWORY/FUACTION section. The iADI connector
makes it possible to control the DXI from the YRHAHiA KXl or EX5 Remote Fieyboarc, mutual control between the DKl and another keyboarc equipped with a MIDI connector, or control the DXI from a computer or sequencer.

* The hifi connector transmits or receives 31,250 bits of information per second and is capable of responding in real time. CHANNEL INFORAATION including key-on, key-off, effect controller anci voice memory number dáta, as well as SYSTEif IHFORiATIOH including voice data, effect aata and paraneter select status can be handleci.
* The CHANNEL INFORHATION format is compatible with keyboarcis macie by any other manufacturer, so any HIDI standarc keyboarcis, computers or sequencers can be used.
* SySter inforidatiolj includes sysien EXCLUSIVE DATA for transfer of memory data and switching voice paranaters, and SYSTEA REAL TIME DATA for remote secuencer control. In particular, SYSTEi EXCLUSIVE DATA is a YA:AAHA-ONly standarci: all Yamaha DK series synthesizers and HIDI standard equipment can be used.
* 16 indepencent MIDI data channels are incorporatec, and each can be independently controlled. When the DXI is usea to contrcl an external piece of equipment, channel 1 is automatically selected. When the $\mathrm{D} K l$ is to receive data from an external source, the (2) SOURCE SELECT function must be used to match the receiving channel in the DXl with the transmitting channel in the external data source. \rightarrow P. 36
* The inIDI connectors are provicea on the rear panel. Three connectors are provided HIDI OU', HIEI IN, and HILI THRU (AIDI THRU outputs the data received at i.IDI If as is) (fig. 79).

Fig. 78. MIDI Information Control

Fig. 79. MIDI Terminals

(18) PERFORHANCE \& VOICE 7 (F15)

3 Jobs are provided: KIDI SWITCH, SET STATUS, TRANSKIT DATA.

Joi 1 - HIDI SWITCH
This master switch turns the HIDI terminals ON or CFF. The ON/CFF status can be set at the DATA ENTRY section.

* When Oll liILI data transfer with external equipment is possible.
* When OFF the firdi terminals will not function.
* The lifdi suitce can not be turned Oi or OFF while a key is pressed.
* The LCD display will read "FUNCTION 15 - ${ }^{[1 I I D I} \gg$ STAT \gg DUiHP HIDI switch XX". "xX" is the OH/CFF status.

Job 2 - SET STATUS
This sets the type of data to be hanciled. 5 Sub-Jobs are included: BASIC EVENT DATA OUTPUT, OTHLR EVENT DATA OUTPUT, SYSTEI: EXCLU. COMHUNICATION, OLNI RODE, and PROGRAK CIIANGE LODE.

* The 5 Sub-Jobs can be selected sequentially by pressing teh DATA EATRY NO outton.
*BASIC EVE:T DATA OUTPUT (Sub-Joi 1)
This turns BASIC EVENT DATA (data relating to the keydoarc and controllers) transfer via the iIDI connectors ON or OFF.
* When On, the aata described in (a)--(f) below is transmitted from the MIDI OU' connector when the DKl is played.
* This data is generally common to all keydoarc's compatible with the fidDI system. Due to differences in the features provicied on some keyboarcs, however, complete compatibility can not be guaranteed.
* The LCD aisplay will read "FUNCTIOI 15
 event ciata output $X X$ ". " $X X$ " is the OM/OFF status.
* The ON and OFF states alterrate when the DATA ENTRY YES button is pressed.
**iiain BASIC EVENT DATA contents
(a) KEY ON/OFF: Key timing.
(i) KEY NUMBER: Which key(s) has been pressed.
(c) KEY VELOCITY: Initial touch response data.
(d) SUSTAIN FOOT SH: Sustain ON/CFF.
(e) PITCH BEIJD WHEEL: Pitch bend depth datá.
* Transmission: The DXI transmission channel is 1 , so the receiving instrument or equipment must be set up to receive on channel 1.
* Reception: The (2) SOURCE SELECT function can be used to match the DXI receiving channel with the transmission channel of the external instrument or equipment, or OIIII MODE (Sub-Job 4) can be set for continuous reception.
(f) SYSTEM REAL TIME DATA: Remote sequence.
* Transmission: When the DXl is used with a sequencer or computer, the SYSTEH REAL TIME DATA perrits sending START/PAUSE/STOP commands to the external equipment from the DX1.
* This is actually included in the SYSTEM INFORIATOH, but can de turned OM/CFF using basic event data output.
* Remote sequence commands are sent using the (19) REHOTE SEQUENCE function. $\rightarrow P .51$
* Reception: Ignored. This has no effect on the DXI.
*OMAER EVEHTS DATA OUMPUT (Sub-jod 2)
This turns OTnER EVEITT DATA (ciata not included in BASIC EVLNT DATA, relating to performance functions, memory selection, etc.) trensfer via the HILI connectors Oil or OFF.
* When OH, the ciata ciescribed ir (g) --(0) below is transmittea from the IIDI OUT connector when the LXl is playec.
* This cata is generally comon to all keydoarcis conpatikle with the HIDI system. Due to differences in the features provided on some keyboards, however, complete compatibility can not be guaranteed.
* The LCD display will read "FUNCrion 15
 event ciata output $x \mathrm{X"}$. "XX" is the ON/OFF status.
* The On and OFF states alterrate when the DATA ENTRY YES button is pressed.
**iair: OMABR EVEUT DATA contents
(g) iiODULATION WHEEL: LFO nociulation and EG BIAS deptr.
(h) FOOT COiATROLLER: LFO modulation ance EG BIAS depth.
(i) AFTER TOUCH: LFO modulation and EG BIAS depth.
(j) BREATH COUTROLLER: LFO nodulation and EG BIAS depth.
(k) PORTAMEITTO SLIDER: Portamento time.
(1) PORTAMEMYO FOOM SU: portamento ON/OFF.
(m) FROGRAL CLAAVGE: VOICE NULBER or PERFORIAACE NUMBER selection.
(n) LATA ENTRY SLIDER: EEIT/FUNCTION mode input ciata.
(o) +/- SW: EDIT/FUINCTION mode input data.
* Transmission: The DKl transmission channel is 1 , so the receiving instrument or equipment hust be set up to receive on channel 1.
* fihetieer a VOICE midfory number or a PERFORMANCE HEHORY number is sent in PROGRAM CHATGE is selected using Sub-Job 5 PROGRALI ChAIGGE IODE.
* Reception: The (2) SOURCE SELECT function can be used to match the DXI receiving channel with the transmission channel of the external instrument or equipment.
* VOICE numbers can be received in teh PLAY and FUNCTION modes, PERFORHANCE numbers can be received in the PLAY modie only, and DATA ENTRY +/- and slider data can be received in the EDIT and FUNCTION modes.
* RIDI receivinc channel is included in the PERFORMANCE HEHORY data. When receiving a PERFORAANCE KEMORY NUMDER, if a PERFORHANCE REHORY with a different receiving channel number is selected, reception becomes impossible. This will not happen if the receiving side is set to the omm mode.
*SYSTE: EXCLU. COMHUNICFTION (Sub-JOD 3)
This turns transfer of data exclusive to

Yamaha DX-series synthesizers and RIDI standard equipment ON or OFF. \rightarrow P. 66

* When ON, transfer of the data describec in (p)--(t) below is possible.
* ilemory haijagenenis and bidy info. CONTROL data parameters can not be transferred using the HIDI systen (except for OHIN MODE).
* The LCD display will reáa "fuisction 15
 exclu. communication $X X^{\prime \prime}$. "XX" is the ON/OFF status.
* The ON and OFF states alternate when the DATA ENTRY YES button is pressed.
* Transmission: The DXI transmission channel is 1 , so the receiving instrument or equipment must be set up to receive on channel 1.
* Reception: The (2) SOURCE SELECT function can be used to match the DXI receiving channel with the transmission channel of the external instrument or equipment.
** Hain SYSTEI EXCLUSIVE DATA contents
(p) ONE BULK DATA: VOICE EDIT BUFFER and PERFORIAALICE EDIT BUFFER data.
* VOICE EDIT BUFFER and PERFORMAiJCe EDIT BUFFER ciata can be output from the iIIDI OUT terminal. The data content transmission proceciure is given below. However, PERFORHANCE EDIT BUFER data can only be received by another DXI. \rightarrow P. $7 \boldsymbol{q}$
* Press a VOICE henory or perforliance HEMORY button while holcirig the DATA ENTRY YES button: the called memory contents is output.
* Use the INITIALIZE MEiORY function: initialized voice data is output.
* Use the RECALL EDIT BUFF function: the recalled data is output.
* Reception: Data received via HIDI Iivis stored in the VOICE EDIT BUFFER.
(Q) 32 VOICE BULK DATA: The entire contents of one VOICE HiflORY channel.
* Transmission: one entire channel of VOICE HEHORY is transmitted from the DXI. TRANSHIT DATA (Job 3) is used to initiate the transmission. \rightarrow P. 50
* Reception: This is the same function as (16) LOAD FROM CARTRIDGE (Sub-Jod 1 , 2). The data received from the transmitting instrument or equipment is stored directly into the VOICE MEA:ORY.
* In the PLAY or EDIT mode, the upper row of the display will read "<<nIDI>> when reception is complete.
* In the FUNCTION mode, the lower row of the display will read "Received bulk data thru liIDI" when reception is complete.
* In the STORE mode, the "**LIDI ERROR** RX full!" display will appear and reception will be terminated.
* If a reception error occurs, the "**HIDI ERROR** check-sum error!" message will appear.
* If PROTECT HELHORY URITE is ON, the "**illdi ERROR** Memory protected!" display will appear.
(r) 64 PERFORHANCE BULK DATA: All 64 PERFORIIANCE HEHORY positions are transferred.
* Transmission: All PERFORMANCE MEMORY data is transmitted at once. TRANSMIT DATA (Job 3) is used to initiate the transmission. However, this data can only be received by a DXl. \rightarrow p.75
* Reception: This is the same function as LOAD FROH Cartridge. The ciata received from the transmitting instrument or equipment is stored directly in the PERFORHANCE HEMORY.
* The reception completed displays and error displays are the same as for (q) above.
(s) EDIT PARAMETER CHALGE: VOICE parameter data.
* Transmission: Switching to the EDIT modie and other VOICE parameter operetions are transmitted in real tine. \rightarrow P. $7 \boldsymbol{T}$
* Data entered at the DATA ENTRY section can be transmitted if Sub-Job 2 is ON.
* Recerition: The EDIT mode is called and VOICE parameters are accessed according to the operation of the external instrument or equipment.
(t) FERFORILANCE HEHORY PARAFETER CEANGE: PERFORIAAICE HEHORY parameter data.
* Transmission: Switching to the FUINCTION mode and other FUNCTION parameter operations are transmitted in real time. This data can only be received by a DXl. \rightarrow P.75
* Data entered at the DATA ENTRY section can be transmitted if Sub-Job 2 is ON.
* Reception: The FUivCTION mode is called and FUNCTIOiv parameters are accessed accorcing to the operation of the transmitting DXl.
* OLHI I HODE (Sub-Jó 4)

This permits HIDI reception on all channels. Channels A and Z are set independently (fig. 80).

* When ON all hIDI receiving channels are active regardless of the setting of SOURCE SELECT (2).
* The LCD display will read "FUNCTION 15A
 XX". "XX" is the OH/OFF status.
* The On and OFF states alterrate when the DATA EIJTRY YES button is pressea.
* The OllNI mode ON/OFF status can be transmitted as in (t) of SYSTEM EXCLU. COMAUICKTION, above, when OTHER EVENT DATA OUTPUT is ON.
*PROGRAM CEALVGE hODE (Sud-jod 5)
Selects the contents (VOICE
NUIEEF/PERFORIAHCE NUHEER) of the OTHER
EVEITS DATA PROGRAR: CHANGE
transmission/recepticn.

Fig. 80. Omni Mode

* The VOICE and PERFORifinCE mocies are alterrately selectec b_{y} pressng the DATA ENTRY YES button (pressing the iJO button selects the Sui-Job number).
* The LCD display will read "FUivC'rion 15 \ggAILI胃STAT>>DULIP SUBJOB 5: Prog. change mode $X X$ ". " $x X "$ is the VOICE/PERFORIIANCE status.

Job 3 - TRANSMIT DATA

This function initiates actual transmission of VOICE HEHORY data or PERFORHANCE HEHORY data as in Jod 2 SYSTEM
EXCLU. COMUNICATION. 3 Sub-Jobs are inclucied: DUMP ALL VOICE IN EANK A, DUliP ALL VOICE IN BANK B, and DUMP ALL PERFORIAIICE DATA (fig. 81).

* Transmission will function only if SYSTEA EXCLU. COMMUNICATION of JOb 2 is ON.
*DUAP ALL VOICE IN BAIJK A (Sub-Jó 1)
All 32 VOICE HEiORY position of one channel are transmitted, and loaded into the corresponding channel VOICE HEMORY of the receiver.
* Press the DATA ENTRY YES button to begin transmission (pressing 100 selects another Sub-Job).
* The channel displayed on the LCD display is trensinitted. The channel can be switched using the VOICE MEHORY switches.
* The LCD display will read "FUNCTION 15
 voice in bank λ ? ".
*DUMP ALL VOICE IN BANK B (Sub-Jód 2)
All 32 VOICE MEHORY position of one charnel are transmitted, and loaded into the corresponciing channel VOICE iUEMORY of the receiver.
* Press the DATA EMTRY YES button to begin transmission (pressing iNO selects another Sub-Jow).
* The channel displayed on the LCD display is transmitted. The channel can be switched using the VOICE HEDORY switches.
* The LCD display will read "FUNCr'ION 15 > $\operatorname{lHIDI} \gg$ STAT ${ }^{[}$DUHP SUBJOB 2: Dump all voice in bank B ?".

Fig. 81. Transmit Data Function.

*DUAP ALL PERFORHAiNCE DATA (Sub-Job 3)
All 64 PERFORHANCE HEHORY positions are
transmitted, and loaded into the PERFORMIHCE HEiORy of the receiver.

* Press the DATA EiNTRY YES button to Degin transmission (pressing ilO selects another Sui-Job).
* ihe LCD display will read "FUNCTION 15 > MIDI \gg STAT DUHP SUBJOB 3: DUMp all performance data?".
**The TRAiNSMIT DATA process
(a) Switch to the FUiNCTION mode.
(b) Select Job 2 SET STATUS with PERFORHANCE \& VOICE switch 7.
* Sub-Jod l BASIC EVEHT DATA is automatically selected.
(c) Press the DATA ENTRY NO button twice to call Sub-Job 3, SYSTEIi EXCLU. COMMUNICATION.
(d) Press the DATA ENTRY YES button to turn SYSTEM EXCLUSIVE COMMUNICATION OL.
(e) Call Job 3, TRANSVIT DATH.
* Súd-Job 1 , dump all VOICE In BAivk a is automatically selected.
* Press the DATA ENTRY iNO button to select Sub-Job 2 (DULP ALL VOICE II BANK B) or Sub-Job 3 (DUAP ALL PERFORIIALICE DATA).
(f) Press the DATA ENTRY YES button to begin transmission.
* If transmission is attempted while Job 1 HIDI SUITCLi is OFF, the "**iIIDI ERROR** iildI switch off!" message will appear.
* If Job 2 SYSTEA EXCLU. COMHUNCATION is OFF the "**LIDI ERROR** System e\%. off!" message will appear.
* If other event data output of the receiving instrument is ON, the ciata and control status of the receiver will
be altered according to the transmitted data. If the receiver FUNCTION mode SOURCE SELECT, HILI OH/OFF or OHIJI HODE are OLJ when the YES command is given, the receiver hiay turr off, terminating reception.
(g) During transmission--approx. 1.5 seconds--"BUSY!" will appear on the display.
* BASIC EVENT DATA or OTHER EVENT DATA transmission will be terminated if the "BUSY!" aisplay is ON.

(19) PERFORHANCE \& VOICE 8 (F16)

\therefore single Job--REMOTE SEQUENCE--is incorporated here.

Job 1 - REMOTE SEQUENCE
When the DXI is used with a sequencer or computer, this function permits sending START/PAUSE/STOP commands to the external equipment from the DXI.

* A DATA ELITRY YES input sends the START command.
* Pressing the DATA ENTRY NO button once sends the PAUSE command.
* Pressing the DATA ENTRY NO button twice in succession sends the STOP command.
* The display will read "FUNCTION 16 ■⿴SEQ Sequence contrl $\mathrm{HO}=$ pause $>$ stop, YES $=$ start. The cursor points to the current START, PAUSE or STOP command.
* This is actually included in the SYSTER INFORIAATON, but can be turned ON/OFF using BASIC EVENT DATA OUCPUT. \rightarrow P. 73
* If the HIDI switch ON/OFF or OMinI hODE are OFF, and the receiving channel is not matched to the sequencer with the
(2) SOURCE SELECT function, the sequencer may start, but the sequence sicnal will not be received by the DXI.

CHAPTER 6

STORE MODE/DATA MEMORY STOCK

The GTORE mocie STOREs voices created in tice Edit houe and effects programaed ir the Function move ia hemory.

6-1 3 Varieties of the STORE Function

3 Types of Hemory

The DXI has two types of memory function, for voice ciata in the 2-channel VOICE HEiORY, anci Parforimice ienory. Further, for each of these, the following tinree different types of memory are provicied.
(1) IIJTERINAL AEHORY

Data is preservea insicie tile RXl: Na: (VOICE HEHORY=3 voices X 4 banks $X 2$ channels;
PERFORMAice mehory=e performances i. é Danks).
(2) Cartridge

Internal memory exiansion, exterral cata storage: ROii (VOICE LiEliORX=32 voices X 2 sicies X 2 cartriuges; PERFORiANCEL hemory=64 performances). FAil (VOICE $H E:$ ORY=32 voices Z 2 cartridcjes; PERFORiMACE iEWORY=64 performances).
(3) BUfFER

Data is read into the buffer from the
Cartricige or internal memory Eor data editing ano periormance: Fith ((VOICE niemory (Voice Edit Buffer) $=2$ channels x l voice; PERFORMANCE NE:HORY (Períormance Edit Eufifer) =1 performance)).

* The use of these three types of mencry affords a wide range of operating possitilities. The STORE mode allovs you to exchange diata among the 2 -channel VOICE hehory and perfokmaice iniory in virtually any way required.

3 Varieties of tne STORE Function

* The STORE mode is engaged by pressing the ShORE button on tree right sice of the control panel (Fig. 83). The STORE mode takes precedence over all other modes, so the STORE mode can be switched to at any time just by pressing the STORE button. Further, when the STORE mode is disengaged, the mode engaged prior to entering the STORE modie will be returred to automatically.
* To make the most effective use of this capability, we recommend that instead of preservins ciata with the STORE mocie after the voice creation process has deen fully completed, you should enter ciata at several stages throughout the voice creation process. This eliminates the possiblity of losing all the data through an accidental risoperation.
* The STORE mode has three options, STORe.

Fig. 82a. Voice Memory Data Transmission Channels

Fig. 82b. Performance Memory Data Transmission Channels

Fig. 83. Calling Store MODE

ALL, STORE VOICD, anc GOORE PERFCRMil:CE, and these are selected via the DATA EITRY NO switch. Using these three functions separately and together, it becomes possible to interchange ciate íreely.
(1) STORE ALL

This STOREs VOICE JEHORY and PERFORHALCE HEHORY simultaneously. The Hemory position can not be changeci, anci ciata can not be transferred between main unit and cartridge.

* The fallowing is displayed: "STCRE ALL FIOM > $>$ CURRENT EDITING TO>>CURRENT SELECTED?"
(2) STORE VOICE

SfORAS VOICE diata in each of the separate channels. iemory position can be changeci, anci
uatá can we transferrea between main unit and cartridge.

* rine following is uisplayed in the play nocie: "STORE VOICE FROLi>>INT Al-1 $2 x \times 2$ CO>PIN al-l YYYY?".
* Tine following is aisplayed in the Eait
 TO>>INT AI-1 YYYY?" (Fig. 35).
*"PROil> 1 Ir' Al-1" refers to the original nuniver, "TO>>LisT Al-1" refers to the SCORE location, "XXXX" refers to the original Voice Name or Edited Voice llame, and "YYYY" refers to store locaticn Voice ivaine.
(3) STORE PERFOMHANCE

STORES data in PERFORLANCE MEMORY. ilemory position can be changed, and data can be transferreci between main unit and cartricge.

* The rollowing is displayed: "STORE PERFOREALCE FROM>>CURRENT XXXX TO>>INT Pl-1 YYYY?" (Fig. 36).
* "XXXX" refers to the first ten letters of the original Performance ivame or the changed Performance wame, "YYYY" refers to first ten letters of the Performance i:ant ir the STORE location, and "TO>>IMT 2l-1" refers to the STORE location number.
Fig. 84. Store All LCD Display

STORE HLL	FROM TO>PCUREEHT SELECTED

Fig. 85. Store Voice LCD Display

STORE	$\begin{gathered} \text { FROMS INT. A1-1 } \\ \text { TOS } \end{gathered}$	8694	9
	After editing.		
STORE UOICE	$\begin{gathered} \text { FROMSEEGTING } \\ \text { TOST. } \end{gathered}$	किष	$? \square$

Fig. 86. Store Performance LCD Display

STORE FERFDEMAHEE	$\begin{gathered} \text { FROMGCURREHT } \\ \text { TOST.FI-1 } \end{gathered}$	

Henory Protect Function
There is a memory protect function which prevents accidental erasure of ciata in Internal liemory and in external RAil Cartridees. Mihis shoula aiways be turna off prior to engaging the STORE mocie. Also, in orcer to prevent accidental eresure or the data after a STORE function has been confleteu, the Renory protect function shoulc be reset.

* With regara to the Interral lemory, the Periomance a Voice switch 6 of the Function mode is selected, and according to PROTECT NEHORY IIrite, the ilemory Protection Function is engaged. It can be disengagea by pressing the dara elvmy io button. Protect iemory Write will be reset when power is turned on again after having jeen turnec off.
* The RAli Cartriuge has a memory Protect switch, and when this is turned off, the Hemory Protection Function is defeated.
* The foii Cartridge is reaci-only. Since RCi: cannot be written to, menory can not be erased.

6-2 Application of STORE ALL

STORE ALL Application Examples

The STORE ALL function returns the data residing in the buffer to the original memory number of the VOICE HEMORY and PERFORHANCE Hibiory simultaneously. The following three types of data transfer are carried out at the saine time:
Voice Edit Euffer A to DXl VOICE HEHORY A or VOICE HEHORY Cartridge A.
Voice Eait Luffer e to dXl VOICE nEiORY B or VOICE HEMORY Cartridge B.
Performance Edit Buffer to DXI PERFORLIALICE HEHORY or PERFORLAANCE MEHORY Cartridge. (Fig 87).

* Data cannot be transferred between chanrels or between different memory numivers with the STORE ALL function.
* Data cannot be transferred between the DXI and the Cartridge with STORE All. Data called from the DXI is returned to the DKl, and data callea from the Cartridige is returned to the Cartridge.

Data storage and data transfer can be carried out in the following cases:

* I: Shen VOICE henory number data stored in the DMI PERFORLANCE HEMORY is changed and returned to the origiral perforiance HEmORY number while in the play mode.
* II: When VOICE fiemory number data stored in the perforiialice Hemory cartridge is changed and returnea to the original Cartricige number while in the play mode.
* III: When the voice ciata in the DKl VOICE MEHORY is changed and returned to the original VOICE mmory number wiole in the Eait mode.
* IV: When the voice catà in the VOICE HE:MORY Cartridge is changed and returned to the original Cartriage number while in the Edit mode.
* V: When the DXI PERFORiARCE HEHORY effect data is changed and returned to the original PERFORIAMCE hEMORY number while in the Function mocie.
* VI: When the Cartricige PERFORiAnice heiory effect cata is changed and returnea to the original Cartricige nuriver while in the function mode.

Fig. 87. Store All Transmission Channels

$\Rightarrow \Rightarrow$ PIMLAY/EDIT/FUNCTION MODE

* VII: When the DXI VOICE iEniORY number storedi in the DXl Perforiance liemory is changed while in the Play mocie, when the voice data is changed while in the Edit mode, and when the effect data is changed and returned to the original DXI
PERFORAACCE WD:ORY while in the Function mocie (i.e., I, III anà V combined).

The Grore ill process (fig. 88)
The awove VII operations can be accomplished with the following process.
(a) Turn all mode selectors OFF and enter the alay mocie.
(b) Select the PERFORHANCE HEMORY SMORE ciestination and call the data into the PERFORMANCE EDIT BUFFER.
(c) Select the voice data to be edited iron both VOICE HEFORY channels and call the data into the VOICE EDIT EUFFER.
(d) Switch to the EDIT mode.
(e) Eait the ciata in the voice edit buffer of the flashing channel.
(f) Select the other channel cy pressing the coninuously lit channel button.
(g) Edit the ciata in the VOICE EDIT BUFFER of the flashing channel.
(h) Switch to the FUlNCiION mode.
(i) Eciit the effect data in the PERFORMANCE SDII BUFFER.
(j) Turn PROTECT MEHORY WRITE OFF.
(k) Switch to tíe STORE modic.
(1) STORE ALL is autonaticaliy selecteci.
(ii) Eress the EnTA EnTRY Yes button and the A/B VOICE EDIT BUFFER data and PERFORLANCE EDIT LUFFER data will be stored simultaneously.

* If the yES button is presseci while PROTECT IEMORY NEITE is still ON, the "**ERnOR** iemory protected!" message will we cisislayeā.

6-3 STORE VOICE APPLICATIONS

STORE VOICE Application Exanples
The srone VUICE functicn ieriiits storirg VOICE inenory data to a speciried memory position. Data can be transierred froin the in and D VOICe DDI'r BUFFERS to the A and B internal memory or A and B cartricige memory (Eig. 39).

* STORE VOICL can de periorimeú only for one channel at a time.

The following ciata storace anci transfer processes are possible:

* I: Storing VOICE imilory cata (internaj or cartridge) in a difrerent memory position in the PLAY moce.
* II: Storing VOICE LIECORY cata (internal or cartricige) in a different memory channel in the play mocie.
* III: Storing VOICE mBMORY ciata jetween the internal memory and an external cartridge in the plis inode.
* IV: Returning VOICS data (internal or cartriage) to the orician menory position after editing in the EDIT mode.
* V: Storinc VOICE data (internal or cartricige) in a new memory position after editing in the EDIT mocie.
* VI: Storing VOICE data (internal or cartridge) in a cifferent channel after editing in the EDIT mode.
* VII: Storing VOICE data in an external cartridge after eciiting in the EDIT mode.
* VIII: Storing VOICE data fron an external cartridge in the internal memory after eciitinng in the EDIT mocie.

The STORE VOICE process (fig. 90)
The above VII operations can de accomplishea with the following process.
(a) Select the voice ciata to De eqited frow both VOICE MEMORY channels and call the data into the vOICE EDI' EUEFER.
(b) Insert a VOICE hemony Rail CARTEIEGE.

* Turn the CaRTRIECE switch CFF.
(c) Switch to the FUNCTION moäe.
(d) Turr PROAECT MEN:ORI MAITE OPF.
(e) Turn the FUisction switch OFF.

Fig. 89. Store Voice Transmission Channels

\Rightarrow PLAY/EDIT
MODE
\Rightarrow STORE MODE

Fig. 88. Store All Operating Process

(a)

Fig. 90. Store Voice Operating Process

(d)
(f) Switch to the IDIT mode.
(g) Eait the data in the VOICE EDIT BUFFER oif the illashing channel.
(h) Switch to the STORE mocie.
(i) Using ti:e DATA EnTRY iJO button call the STORE VOICE mocie.
(j) Iurn the CfRTRIDGE switch of the channel to je storea to O.J.

* If an incorrectiy formattec cartricige is inserted or the wrong access procedure is iolloweu, the "** ©RROR** Cartricge format conilict!" nessage will appear.
* If a cartricge is not inserted the "**ERROR** Cartricige not ready!" message will appear.
* If mótect menory inite is on the "**ERROR** W -protected!" nessage will appear.
(k) Use the VOICE minORy switches to select the STORE ciestination position.
(1) Eress te DATa Enary Yes button to initiate the STORE operation, causing the ecitec cuata in tre duifer to be sent to tine cartricige.
(in) The $\dot{\text { LDIT }}$ mocie will be returreci to autonatically.
(n) Press the other channel button to switch channels.
(0) Eait the ciata in the voICE EDIT EUPFEr of the flashing channel.
(i) Switch to the GTORE moce.
(c) Using the DATA Riviris ivo button call the Srore voice mocie.
(r$)$ Turn the CARTRIDGE switch of the channel to be stored to Oli.
(s) Use the VOICE HEHORY switches to select the ETORE ciestination position.
(t) Press the DATA DiNTRY YES button to initiate the sTORE operition, causing the edited ciata in the bufier to be sent to the cartridige.

6-4 STORE PERFORMANCE APPLICATION

STORE PERFORHANCE application examples
STORE PERFORAAMCE perifits storing cata in a specified PERPORAMACE WEHORY position. Data can de transferred erom the perforiance gitit SUFPER to an internal PERFORAANCE MEiORY position or to an external Perforidnce nenory CARTRIDCE.

Fig. 91. Store Performance Transmission Channels

| PERFORM-
 ANCE
 MEMDRY |
| :---: |\Rightarrow| FUNCTION |
| :---: |
| BUFFER |\Leftrightarrow| PERFORM- |
| :---: |
| ANCE |
| CARTRIDGE |\quad| \Rightarrow PLAY/FUNCTION |
| :--- |
| MODE |
| \Rightarrow STORE MODE |

* The Store perforithice function permits storing PERFORHANCE MEHORY parameters (VOICE MEHORY number, CKRTRIDGE switch OM/OFF status, IEY ASSIGiv MODE, etc,).

The following data storage and transfer processes are possible:

* I: Storing perforliance liLhory data (internal or cartridge) in a different menory position in the PLAY nocie.
 between the internal memory and a cartridge memory in the PLAY mode.
* III: Euiting the voice nemory number data in a PERFORIAANCE HEVIORY position anc re-storing it in the original nemory position in the PLAY mode.
* IV: Editing the voice memory number ciata in a PERFORHANCE IEHORY and storing it in a cifferent memory location in the pliy mocie.
* V: Editinc the voice memory number ciata in an internal PERFORAANCE HEMORY and storing it in an external performance HEHORY CARTRIDGE.
* VI: Eaiting the voice memory number cata in PERFORHANCE HEHORY data from an external cartridge and storing it in the internal performance hemory in the play node.
* VII: Storinc edited PERFORi:ANCE REHORY effect data (internal or cartridge) back in the original PERFORHANCE HEMORY position in the FUNCTION mode.
* VIII: Storing edited PERFORiinNCa hel:ORy effect data (internal or cartridge) in a different luenory position in the FUNCTICi mode.
* IX: Storinc edited perforiance hemory effect data in an external cartridge in the FUNCTION mode.
* $\mathrm{X}: ~ S t o r i n g ~ P E R F O R L A N C E$ HEMORy effect data called from an external cartricige and edited in the internal PERFORiiAiJCE HEHORY in the FUNCTION mode.

The STORE PERFORHANCE process (fig. 92)
The above Y operations can be accomplished with the following process:
(a) Insert a PERFORAANCE NEMORY CARTRIDCE into cartridge slot A.
(b) Press the CARTRIDGE switch while holcing a PERFORiANCE HEHORY switch to access the cartridge.

* (b) is the procecure for accessing PERFORMANCE LIEHORY (FORHAT = Ol) cartriciges.
* If an incorrectly forniattea cartricige is inserted or the wrong access procedure is

Eollowed, the "**ERHOR** Cartridge format conzlict!" message will appear.

* If a cartricige is not inserted the "**ERROR** Cartridge not ready!" message will appear.
(c) The end of the upper row of the performance name dispiay will reacu
"<<CRRTRIDGE>>" indicatirg the PERFORHANCE HEMORY cartridige is being accessed.
(d) Select the PERFORiALiCE i:EHORY data to de edited anci call it into the PERFORAMCE EDIT BUFFER.
(e) Switch to the FUINCTION mode.
(f) Edit the effect ciati.
(g) Turn PROMECT i:EMORX WRI'E OFF.
(h) Switch to the STORE mocie.
(i) Press the DATA ERMRY no Dutton to call the ETORE PERFORAALiCE function.
(j) Turn the CARTRIDGE switch OFF.
(k) Select the ciestination Perfortinicu HEMORY position.
(1) Press the EATA EuTRY YeS putton to initiate the STORE process. The data in the PERFOR:AACE EDIT EUFFER will we transferred to the ciesignated PERFORAMACE iEiiORY positicn.

Fig. 92. Store Performance Operating Process

VOICE INITIALIZE／PROGRAMMING A NEW VOICE

In this section we＇ll look at the steps involved in creating a completely new voice using initialized voice and effect parameters． As an example，we＇ll program a＂HORN ENSEMBLE＂ voice with a stereo effect．
＊The voice to be programmed in this chapter is not included in the DXl preset voices．

7－1 Programming a voice from the INITIALIZE MEMORY state

（1）THE VOICE PROGRAMMING FLOW CHART

Then beginning to program a voice from the initialized state，the proper procedure must be followed to achieve the highest efficiency． The finer details of the process will vary according to the type of voice that is to be programmed，but to create a voice using both channels A and B with a stereo effect，the following general procedure should be followed．
＊Call the initialized data \Rightarrow
＊Enter the channel A voice data \Rightarrow
＊Store the voice data and alter channel B．
＊Enter effect data and effect controller data．
＊Store the effect data．
（2）CALLING THE INITIALIZED DATA（fig．94）
The FUNCTION mode MEMORY MANAGEMENT buttons are used to call the INITIALIZE MEMORY function．
（a）INITIALIZE VOICE Switch to the FUNCTION mode，and run the INITIALIZE VOICE function on both channels．
＊With INITIALIZE VOICE，the initialized voice parameter data for each channel can be called into the VOICE EDIT BUFFER．\rightarrow P． 44
＊Normally，INITIALIZE VOICE will be performed on both channels，In this case， however，we＇ll initialize channel A only， enter the voice data，copy the channel A data to channel B and alter it．It is therefore only necessary to initialize channel A．\rightarrow P． 45
＊The initial data created by the INITIALIZE VOICE function is not totally ＂blank＂data，as is created by the

Fig．93．Flowchart：Creating Voice from the Initial Data

』

』

』

』

Storing effect data．
（y）F8：PERFORMANCE NAME
（z）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．FUNCTION MODE
（zTORE PERPORMANCE ．．．STORE MODR

formatting of RAM cartridges. Instead, all parameters are set to values which make subsequent voice programming as easy as possible.

* When INITIALIZE VOICE is used, the EDIT indicator will light even though the FUNCTION mode is selected. Then, simply by turning the FUNCTION switch OFF, the EDIT mode is automatically selected permitting immediate data entry.
* In this case, first use the INITIALIZE PERFORMANCE function and then exit the FUNCTION mode.
(b) INITIALIZE PERFORMANCE

While still in the FUNCTION mode, run the INITIALIZE PERFORMANCE function.

* The INITIALIZE PERFORMANCE function calls initialized PERFORMANCE MEMORY parameter data into the PERFORMANCE EDIT BUFFER. \rightarrow P. 43
* As with INITIALIZE VOICE, INITALIZE PERFORMANCE does not create totally "blank" aata. The parameters are set up for the easiest programming. \rightarrow p. 44
* Since the OP 2--6 OPERATOR OUTPUT LEVEL in both channels A and B are initially set at 0 , the only sound that will be hear at this point is that of the OP 1 carrier. No FM effects will be heard. \rightarrow p. 5
* After running INITIALIZE PERFORMANCE, turn the FUNCTION switch OFF to exit from the FUNCTION mode.

7-2 ENTERING VOICE PARAMETER DATA

Here, only the channel A data will be entered. The channel A data will then be copied to channel B and altered.

* In order to hear the results of the data entered, the OPERATOR OUTPUT LEVEL of OP 2 through OP 6 should be set at around 90.
* Make sure that all operators are ON.
* While programming the voice parameters, play a key within the most commonly used horn range (Al--C2). The maximum range of a horn is from F0 to F4.
* After completing each programming step, it is a good idea to save the programmed data with the STORE ALL function to prevent accidental data loss.
(1) ENTERING THE CHANNEL A VOICE DATA
(fig. 95. 96)
(c) ALGORITHM : A \rightarrow P. 22

The basic tone generator characteristics will be set in this section.

* ALGORITHM $\Rightarrow 3$

Algorithm 1 is automatically selected, but it is necessary to select an algorithm

Fig.95. Entering Voice Data (Algorithm)

which is most suited to the target horn voice. We'll use algorithm 3 , which has 2 carriers, each with 2 modulators.

* OP 1 will be used to create the slow timbre variation of a horn, and OP 4 with feedback will be used to add the horn's distinctive "rasping" effect.
* FEEDBACK $\Rightarrow 7$ FEEDBACK is used to generate noise. Set FEEDBACK to 7.
(d) OSCILLATOR : A \rightarrow P. 22

More "basic" tone generator settings.

* $\mathrm{MODE} \Rightarrow$ OP $1--6=$ FREQUENCY RATIO (no change)
* COARSE, FINE \Rightarrow OP 1--6 $=1.00$ (no change)
A setting of 1.00 makes for the easiest programming of brass instrument harmonics.
* DETUNE \Rightarrow OP $1--6=0$ (no change)
* The chorus effect will be created using DUAL MODE DETUNE in step (p). If more richness is required, DETUNE can be programmed later.
* KEY SYNC \Rightarrow ON (no change) \Rightarrow PERFORMANCE MEMORY -- BANK $8 \rightarrow P .29$
(e) OPERATOR OUTPUT LEVEL : A \rightarrow P. 27
$\Rightarrow O P 1,4=99 / O P 2,3,5,6=70$
The carrier operator (OP 4) is set to 99.
The modulator operators are all set to 70
to give a softness to the sound. This
completes the basic voicing.
(f) ENVELOPE GENERATOR : A $\rightarrow P .23$

Once this step is complete, the sound
will be close to the desired horn voice.

* EG
\Rightarrow OP 1, $4: \mathrm{RI--4}=99 / \mathrm{LI}--3=99 / \mathrm{L} 4$ 0 (no change)
\Rightarrow OP 2, $3: R 1, R 2=50 / R 3, R 4=99 / \mathrm{L} 1$ $=99 / \mathrm{L} 2-4=0$
$\Rightarrow \mathrm{OP} 5,6: \mathrm{Rl}=65 / \mathrm{R} 2=50 / \mathrm{R} 3, \mathrm{R} 4=$ 99/ $\mathrm{Ll}=99 / \mathrm{L} 2--4=0$
OP 2 and 3 create the horn's gentle timbre
variation. The Rl of OP 5 and 6 is set
faster than Op 2 and 3 to bring out the
raspiness of brass instruments.
* Since many modulators use the same data, the FUNCTION mode MEMORY MANAGEMENT COPY ENVELOPE DATA function can shorten the

Fig. 96. Entering Voice Data (Oscillator-Key Velocity)

data entry process.

* If the envelope variation is insufficient, increase the OPERATOR OUTPUT LEVEL of the modulators.
* PITCH EG \Rightarrow RI- $4=99 /$ LI- $4=50$ (no change)
* If RI = 60 and $L 4=48$, a pitch slur at initial attack can be created.
(g) KEYBOARD SCALING : A \rightarrow P.25 This function is used to create a generally brighter, brassier tone outside the horn's central range.
* LEVEL SCALING
\Rightarrow OP 1, 3--6 : DEPTH L, $R=0 /$ CURVE L, R $=-$ LIN/ BREAK POINT $=0$ (no change)
\Rightarrow OP 2 : DEPTH $L=20$, DEPTH $R=10 /$ CURVE L, $R=+$ LIN/ BREAK POINT $=30^{\circ}$ For greater brightness, increase the level of OP 2 .
* RATE SCALING $\Rightarrow O P 1--6=0$ (no change)
(h) KEY VELOCITY: A $\rightarrow P .25$
$\Rightarrow O P 1,4=5 / O P 2,3,5,6=3$
This creates the effect that the harder the horn is blown, the louder and brighter the tone.
(i) LFO : A \rightarrow P. $27 \sim$ P. 20

The SENSITIVITY block AMPL. MODULATION and PERFORMANCE MEMORY section LFO parameters are set so that the MODULATIO WHEEL can be used to control the stereo tremolo effect, and the FOOT CONTROLER can be used for volume control.

* The effects can not be used until the FUNCTION mode MOD. WHEEL and FOOT CONT. data are entered.
* AMPL. MODULATION \Rightarrow OP $1,4=3 / \mathrm{OP} 2,3$, 5, $6=2$
Carrier modulation for tremolo and modulator modulation for wow are added.
* WAVE \Rightarrow TRIANGLE (no change)
* SPEED $\Rightarrow 12$
* DELAY $\Rightarrow 0$ (no change)
* PMD $\Rightarrow 0$ (no change)
* PMS $\Rightarrow 0$

Vibrato is not used with this voice, so PMS
$=0$.

* If vibrato is to be added with after
touch response, etc, set PMS at 3 .
* AMD $\Rightarrow 0$ (no change)
* KEY SYNC \Rightarrow ON (no change)
(j) TRANSPOSE : A $\Rightarrow+00$ (no change) \rightarrow P. 30
* This is normally only used if the range of the target voice is outside that of the DXI keyboard.
* The TRANSPOSE function can be used to place the programmed voice's most commonly used range in the most accessible portion of the keyboard.

Fig. 97. Entering Voice Data (LFO, Transpose)

(2) STORING THE VOICE DATA AND ALTERING THE CHANNEL B DATA (fig. 95--97)
(k) VOICE NAME : A (no change) \rightarrow P. 30

* Normally, the voice name should be programmed when the voice data for channel A has been set.
(1) STORE ALL : A \rightarrow P. 02 When the voice data has all been set for channel A, use STORE ALL to store the data from the vorce EDIT BUFFER A into VOICE MEMORY A.
* STORE VOICE could also be used for this.
(m) STORE VOICE : $A \Rightarrow B \rightarrow P . C R$ The voice data stored in VOICE MEMORY A is copied to VOICE MEMORY B.
* In this case, the EDIT mode is automatically entered as soon as the STORE is complete. Then, by switching to channel B, the data copied from channel A can be edited.
(n$)$ VOICE PARAMETER : $B \quad \rightarrow P .21 \sim$ P. 30
The necessary alterations will be made to
the VOICE PARAMETERS in channel B.
* Here, only the LFO SPEED parameter necessary to create the stereo tremolo effect will be altered.
* LFO SPEED $\Rightarrow 10$

This was set to 12 in channel A. It is set for a slower speed here.

* With this "close" speed setting (12 in A, 10 in B), a stereo effect in which the tremolo effect is somewhat "blurred" is created.
*A more distinct tremolo sound can be created by setting the channel A speed to 12 and the channel B speed to 6.
(0) STORE ALL : B

This time, the edited data in the channel B VOICE EDIT BUFFER is stored in the
VOICE MEMORY.

7.3 ENTERING THE PERFORMANCE MEMORY PARAMETERS

Most of the FUNCTION mode effect parameters are independent for each channel. Since the PERFORMANCE MEMORY is the same for both channels, however, the data cannot be copied from one channel to the other. The PERFORMANCE MEMORY parameters must be entered into each channel directly for each programming step.

* Accidental data loss can be prevented by using the STORE ALL function to store the data from the BUFFER into the main memory after each step of the voice programming process.
* Enter the FUNCTION mode before performing the following operations.
(1) ENTERING EFFECT AND EFFECT CONTROLLER DATA (fig. 98)
(p) Fl : DUAL NODE DETUNE etc \rightarrow p. 36
* This functions simultaneously for channels A and B.
* MASTER TUNE $\Rightarrow+00$ (no change)

Master tune must be set to +00 to achieve reference pitch.

* DUAL MODE DETUNE $\Rightarrow 10$ The channel A and B voices have been made virtually identical to support the stereo effect. Using the DUAL MODE DETUNE function it is possible to create a stereo chorus effect independently from the stereo tremolo effect.
* OSCILLATOR DETUNE can be used to create an even deeper chorus effect.
(q) F2 : POLY/MONO etc \rightarrow P. 35
* POLY/MONO : $A, B \Rightarrow$ POLY (no change)
* MONO is used for solo or monophonic instrument voices.
* SOURCE SELECT : $A, B \Rightarrow 0$ (no change)
(r) F3 : PITCH BEND \rightarrow P. 36
* PITCH BEND RANGE : A, $B \Rightarrow 5$ (no change) By setting the A and B ranges differently, a variable detune effect can be created.
* PITCH BEND STEP : A, B $\Rightarrow 0$ (no change)
(s) F4 : PORTAMENTO \rightarrow P. 36
* PORTAMENTO/GLISSANDO : A, B \Rightarrow PORT (no change)
* PORTAMENTO MODE : A, B \Rightarrow RETAIN (no change)
* PEDAL ASSIGN : A, $B \Rightarrow O N$ (no change)
* TIME : $A, B \Rightarrow 0$ (no change)
* Portamento is an extremely important factor in string instrument voices.
(t) F5 : SUSTAIN PEDAL ASSIGN, etc \rightarrow P. 37
* OUTPUT LEVEL ATTENUATE : A, B $\Rightarrow 7$ (no change)
* PROG. OUTPUT ASSIGN : $A, B \Rightarrow O N$ (no change)
* SUSTAIN PEDAL ASSIGN : A, $B \Rightarrow O N$ (no change)
* Basically, a sustain effect is not normally used with continuous-tone instruments like brass or organ.
(u) F6 : MOD. WHEEL, FOOT CONT. \rightarrow P. 38 The modulation wheel is set to control tremolo, and the foot controller is set to control volume.
* MOD. WHEEL SENSITVITY : A, B $\Rightarrow 15$ (no change)
* MOD. WHEEL ASSIGN : $A, B \Rightarrow 010$ $010=A M D$, permitting tremolo control.

Fig. 98. Establishing Performance Memory parameters

* FOOT CONT. SENSITIVITY : A, $B \Rightarrow 15$ This is set to 15 so that a foot controller plugged into the rear-panel MODULATION Jack can be used to control volume from OFF to MAX.
* FOOT CONT. ASSIGN : A, B $\Rightarrow 100$ $100=E B C$, permitting volume control.
* If LFO SPEED is set to about 35 and FOOT CONT. ASSIGN is set to 001 (PMD), the foot controller can be used for vibrato control.
(v) F7: BRTH CONT., AFTER TOUCH \rightarrow P. 39
* BRTH CONT. SENSITIVITY : $A, B \Rightarrow 0$ (no change)
* BRTH CONT. ASSIGN: A, B $\Rightarrow 000$ (no change)
* The BCl breath controller can be used to "blow" the horn voice if BRTH CONT. SENSITIVITY is set to 15 and BRTH CONT. ASSIGN is set to 100.
* AFTER TOUCH SENSITIVITY: $A, B \Rightarrow 0$ (no change)
* AFTER TOUCH ASSIGN : A, B $\Rightarrow 000$ (no change)
* If LFO SPEed is set to about 35, AFTER TOUCH SENSITIVITY is set to 5--15, and AFTR TOUCH ASSIGN is set to 001, after touch vibrato control is possible.
(w) F8 : SPLIT POINT etc \rightarrow P. 40
* SPLIT POINT $=A, A \Rightarrow C 3$ (no change) When completely different voices from channel A and B are used, the KEY ASSIGN MODE can be set to SPLIT, and the channel A voice played on the section of the keyboard below the SPLIT POINT while the channel B voice is played above the SPLIT POINT.
* KEY SHIFT : A, B $\Rightarrow+00$ (no change)
(x) F9--11 : KEY INDIV. AFTER TOUCH \rightarrow P. 40 A shallow KEY INDIVIDUAL AFTER TOUCH effect is programmed. The level and timbre of individual notes within a chord can be individually varied.
* TOTAL SENSITIVITY: A, B $\Rightarrow 15$ TOTAL SENSITIVITY is set to 15 and overall balance is adjusted using the individual OPERATOR DEPTH parameters.
* decay rate : A, B $\Rightarrow 50-09$

A fast DECAY RATE is set for a sharp variation.

* RELeASE RATE : A, B $\Rightarrow 99$ (no change)
* A sustain effect is produced if RELEASE RATE is set to a small value.
* OP 1-6 DEPTH : A, B $\Rightarrow 7$
(2) STORING THE EFFECT DATA (fig. 98)
(y) F8 : PERFORMANCE NAME \rightarrow P. 40
* Normally a total voice/effect name, an effect-only name or the programmed date is given once the effect data has been entered.
(z) STORE PERFORMANCE \rightarrow P. 53
The completed effect data in the PERFORMANCE EDIT BUFFER is stored into the PERFORMANCE MEMORY.
* After using STORE PERFORMANCE, exit the FUNCTION mode.
* CAUTION: If the FUNCTION mode is exited and different PERFORMANCE MEMORY is selected before the STORE PERFORMANCE function is used, the data in the PERFORMANCE EDIT BUFFER will be lost.

In this chapter we'll take a close look at how the MIDI terminals on the DXI can be used to set up a system with other instruments and equipment, and how the system can be operated.

8-1 ABOUT THE MIDI TERMINALS

(1) MIDI SPECIFICATIONS

MIDI stands for Musical Instrument Digital Interface. This system permits sending control data back and forth between MIDI compatible instruments and other equipment. \rightarrow P. 73

Signal Types

The digital MIDI signals must confirm closely to a predetermined set of specifications for maximum compatibility. Therefore, MIDI control can only be used with instruments or other equipment specifically designed for MIDI compatibility. In the DXI, the MIDI signals are basically divided into 2 groups: CHANNEL INFORMATION and SYSTEM INFORMATION.

** CHANNEL INFORMATION

This group of signals incorporates the performance data: i.e. "remote control" signals such as key ON/OFF and effect controller status. These fall under the heading of BASIC EVENT DATA. Voice memory selection, and data entry data fall in the OTHER EVENT DATA category within the CHANNEL INFORMATION signal group. Hovever, the receiving instrument or equipment may not have all the features controllable by these signals, making the corresponding signals unusable.

* Main BASIC EVENT DATA signals \rightarrow P. 73

KEY ON/OFF
KEY NUMBER
KEY VELOCITY (INITIAL TOUCH)
PITCH BEND
SUSTAIN ON/OFF

* Main OTHER EVENT DATA signals $\rightarrow P .74$

LFO MODULATON
EG BIAS
PORTAMENTO TIME
PORTAMENTO ON/OFF
PROGRAM CHANGE
(VOICE NUMBER/PERFORMANCE NUMBER)
DATA CHANGE (DATA ENTRY)
**SYSTEM INFORMATION
This signal group includes SYSTEM EXCLUSIVE DATA (memory data transfer, parameter switching) and SYSTEM REAL TIME DATA (sequencer control). In particular, SYSTEM EXCLUSIVE DATA is highly dependent on the
functions and data format of the instrument used, and cannot be used with instruments or equipment having a different system. SYSTEM EXCLUSIVE DATA can currently only be used with Yamaha DX series synthesizers and related equipment. If the receiving instrument is not a DXI, some of the signals described below may not be usable, depending on the functions and features of the receiving instrument.

```
* Main SYSTEM EXCLUSIVE DATA signals ->p.74
VOICE EDIT BUFFER DATA
    (ONE VOICE BULK DATA)
PERFORMANCE EDIT BUFFER DATA
    (ONE PERFORMANCE BULK DATA)
VOICE MEMORY DATA
    (ALL VOICE BULK DATA)
PERFORMANCE MEMORY DATA
    (ALL PERFORMANCE BULK DATA)
VOICE PARAMETER CHANGE
FUNCTION PARAMETER CHANGE
* Main SYSTEM REAL TIME DATA signals ->p.75
REMOTE SEQUENCE (START/PAUSE/STOP)
* Signal Channels
```

16 indepedent MIDI data channels (1--16) are incorporated, and each can be independently controlled. The channel used depends on the instrument or piece of equipment used. The channel used by the receiving equipment must be matched with that of the transmitting equipment.

* The DXI transmission channel is channel 1.
* When the DXI is to receive data from an external source, the FUNCTION mode F2 SOURCE SELECT function must be used to match the receiving channel in the DXl with the transmitting channel in the external data source. Channel 0 is the DXI keyboard. \rightarrow P. 35
* If the OMNI mode is set using the FUNCTION mode Fl5 SET STATUS function, reception on all channels simultaneously is possible. This is useful if the channel of the transmitting equipment is not known, or it is necessary to reveive on more than one channel at once.
* The Connectors

The MIDI connector specifications are rigidly determined to ensure full compatibility between all MIDI equipment.

**Connector

The standard MIDI connector is a DIN type.

* The instrument-side connector is a 5-pin DIN jack.
* The MIDI connection cable is fitted with 5-pin DIN plugs on both ends. Please use the optional MIDI cables: MIDI-03 (3 meters) or MIDI-15 (15 meters).

**MIDI IN, MIDI OUT, MIDI THRU

The MIDI connectors are provided on the rear panel. Three connectors are provided MIDI OUT, MIDI IN, and MIDI THRU (fig. 99).

* MIDI IN: receives signals from an external source.
* MIDI OUT: Transmits signals to an external receiver.
* MIDI THRU: Outputs the same signal received at MIDI IN.

Fig. 99. MIDI Terminals

(2) Some MIDI system examples

The MIDI terminals can be used to create an almost unlimited variety of music systems. The following are a few examples.

* Real time control of the DXI from an external instrument or equipment.
* I: Remote keyboatd \Rightarrow DXI. That is, play the DXI from a remote keyboard.
* II: MIDI compatible instrument \Rightarrow DXI. Play the DXI from another instrument, including other DX series keyboards.
* III: MIDI sequencer \Rightarrow DXI. Automatic performance under the control of an external MIDI sequencer.
* IV: Computer \Rightarrow MIDI interface \Rightarrow DXI. A MIDI interface can be used to connect a computer to the DXI for automatic performance, computer composition and editing.
* Real time control of an external instrument or equipment from the DX1.
* V: DXI \Rightarrow MIDI instrument. Use the DXI to control another MIDI keyboard, including the DX series keyboards.
* VI: DXI \Rightarrow MIDI interface \Rightarrow computer. Storing data in an external computer from the DXI, via a MIDI interface (Real -time sequencer control, composition software control, etc.).
* Mutual real time control between the DXI and an external instrument or equipment.
* VII: DXI \Longleftrightarrow DX series keyboard. Mutual data entry between the DXI and another DX series keyboard.
* VIII: DXI \Longleftrightarrow MIDI interface \Longleftrightarrow Computer.

Mutual data entry between the DX1 and a computer (voice programming support software, etc.).

* Mutual data transfer between a DXI and an external instrument or equipment.
* IX: DXI \Rightarrow DX series keyboard. Mutual memory data transfer between the DXI and another DX series keyboard.
* X: DXI \Longleftrightarrow MIDI interface \Leftrightarrow Computer. Mutual memory data transfer between the DXI and a computer.

8-2 MIDI SYSTEM CONNECTIONS AND OPERATIONS

(1) Controlling the DXI from a remote keyboard

In this example the keyboard, voice selectors and effect controllers of an external keyboard, such as the Yamaha KXI, are used to control the DXI (fig. 100).

* Main Signal Contents.
* Reception: BASIC EVENT DATA, OTHER EVENT DATA.
* Connection and Operating Procedure
(a) Connect the remote keyboard MIDI OUT terminal to the DXI MIDI IN terminal.
* If it is desired to simultaneously control other instruments as well, connect as follows:
Remote keyboard MIDI OUT \Rightarrow Instrument 1 MIDI IN.
Instrument 1 MIDI THRU \Rightarrow Instrument 2 MIDI IN, etc.
(b) Switch the DXI to the FUNCTION mode, and set Fl5 MIDI SWITCH ON.
(c) Turn the F15--SET STATUS-OMNI mode ON.
* Reception is also possible if the $F 2$ SOURCE SELECT function is used to turn all PERFORMANCE MEMORY NUMBER related channels ON.
* POLY/MONO mode selection is only possi when the reception channel is matched.
* The KXI transmission channel is channel 1.
(d) Call the F15--SET STATUS--PROGRAM CHANGE MODE and the VOICE/PERFORMANCE MEMORY group to be selected from the remote keyboard.
Fig. 100. Control Through a Remote Keyboard

(e) Switch to the PLAY mode.
* If the DXI is in the FUNCTION mode, PROGRAM CHANGE can not be received making voice switching impossible.
(f) The DXl can now be played via the remote keyboard.
* The KXI transmits BASIC EVENT DATA and OTHER EVENT DATA.
* Normally, the DXI channel A is switched via the KXI BANK and VOICE selectors. If the KXI SUSTAIN switch is held while a BANK or VOICE switch is pressed, the DXI will switch to channel B.
(2) Playing the DXI From Another Instrument

This permits playing the DXI from another MIDI compatible keyboardinstrument.
*Main Signal Contents

* Reception : BASIC EVENT DATA, OTHER EVENT DATA.
* Connection and Operating Procedure
(a) Connect the transmitting keyboard MIDI OUT terminal to the DXI MIDI IN terminal.
* If it is desired to simultaneously control other instruments as well, connect as follows:
Transmitting keyboard MIDI OUT \Rightarrow
Receiving Instrument 1 MIDI IN. Receiving Instrument 1 MIDI THRU \Rightarrow Receiving Instrument 2 MIDI IN, et.c.
(b) Switch the DXI to the FUNCTION mode, and set Fl5 MIDI SWITCH ON.
(c) Turn the FI5--SET STATUS--OMNI mode ON.
* Reception is also possible if the F2 SOURCE SELECT function is used to turn all PERFORMANCE MEMORY NUMBER related channels ON.
* The DXI, DX7, DX9 transmission channel is channel 1.
* If the DXI SOURCE SELECT is set to 0 , and the OMNI MODE is ON, control is possible directly at the DXI controls as well as from the external instrument.
(d) Call the F15--SET STATUS--PROGRAM CHANGE MODE and the VOICE/PERFORMANCE MEMORY group to be selected from the transmitting keyboard.
(e) Switch to the PLAY mode.
* If the DXI is in th FUNCTION mode, PROGRAM CHANGE can not be received making voice switching impossible.
(f) The DXI can now be played via the transmitting keyboard.
* The voice played is set by the received

Fig. l01. Control via Other MIDI Compatible Instruments

PROGRAM CHANGE data. The transmitting keyboard voices have no effect on the selected voice.

* If the FUNCTION mode F15--SYSTEM EXCLU. COMMUNICATION function is turned ON, the DXI voice data can be edited from an external DXI, DX7 or DX9.
(3) Controlling the DXI from a Sequencer

It is possible to automatically "play" the DXI from an external sequencer. The sequencer START, PAUSE and STOP commands can be issued from the DXI control panel (fig. 102).
*Main Signal Contents

* Reception : BASIC EVENT DATA
* Transmission : SYSTEM REAL TIME DATA
* Connection and Operating Procedure

In a polyphonic sequencer a number of MIDI channels are used according to the number of "parts" to be played. If the sequencer does no have a function that permits assigning the transmission channels, the procedure for setting up for polyphonic sequence control and that for monophonic sequence control will be different.
(a) Connect the sequencer MIDI OUT terminal to the DX1 MIDI IN terminal.

* If it is desired to simultaneously control other instruments as well, connect as follows:
Sequencer MIDI OUT \Rightarrow Instrument 1 MIDI IN. Instrument 1 MIDI THRU \Rightarrow Instrument 2 MIDI IN, etc.
(b) Connect the DXI MIDI OUT to the sequencer MIDI IN.
* When more than one instrument is being controlled by the sequencer, connect the MIDI OUT of the most-used instrument to the sequencer MIDI IN.
(c) Switch the DXI to the FUNCTION mode, and set Fl5 MIDI SWITCH ON.
(d) Turn the F15--SET STATUS-OMNI MODE ON
* Reception is also possible if the $F 2$ SOURCE SELECT function is used to turn all PERFORMANCE MEMORY NUMBER related channels ON.
* When a single DXI is being controlled and the sequencer does not permit assigning transmission channels, set the Fl5--OMNI MODE ON.
* If the transmisson channels for different parts of a piece are separated at the

Fig. 102. Automatic Performance via Sequencer

sequencer, an automated ensemble performance can be created by controlling a number of instruments all set to receive different "part" channels.

* If the OMNI MODE is ON and the F2--SOURCE SELECT is set to 0 , the DXl keyboard can be played during sequencer playback.
(e) Turn F15--SET STATUS--BASIC EVENT DATA OUTPUT ON.
* BASIC EVENT DATA can be left OFF if the sequencer START/PAUSE/STOP commands are not to be issued from the DXI.
(f) Call Fl6--SEQUENCE CONTROL to issue the sequencer commands. At this point the START command can be issued to begin playback.
(4) Controlling the DXI From a Computer

A personal computer can be connected to the DXI via a MIDI interface, and used to control the DXI with sequencer-type software. In this case, data transfer is one-way: from the computer to the DXI (fig. 103).
*Main Signal Contents

* Reception: BASIC EVENT DATA

*Connection and Operating Procedure

* As with a sequencer, a number of MIDI channels are used, to separately transmit the individual parts.
(a) Connect the MIDI interface to the computer, and connect the interface MIDI OUT terminal to the DXI MIDI IN terminal.
* If it is desired to simultaneously control other instruments as well, connect as follows:
Interface MIDI OUT \Rightarrow Instrument 1 MIDI IN. Instrument 1 MIDI THRU \Rightarrow Instrument 2 MIDI IN, etc.
(b) Set the DXI to the FUNCTION mode.
(c) Turn Fl5--MIDI SWITCH ON.
(d) Match the PERFORMANCE NUMBER channels to be used with those of the computer.
* When a single DXI is being controlled, set the Fl5--OMNI MODE ON.
* If the transmisson channels for different parts of a piece are separated at the

Fig. 103. Computer-controlled Automatic Performance System BASIC EV. DATA

computer, an automated ensemble performance can be created by controlling a number of instruments all set to receive different "part" channels.

* If the OMNI MODE is ON and the F2--SOURCE SELECT is set to 0 , the DXI keyboard can be played during computer playback.
(e) Set the DXI to the PLAY mode to prevent reception errors.
(f) Enter the playback command at the computer.
* The computer will not transmit OTHER EVENT DATA, so the voice selected at the DXI will be played.
* If it is possible to use the DXI SYSTEM REAL TIME DATA to control START, PAUSE and STOP of the computer (this depends on the computer and interface), connect the DXI MIDI OUT terminal to the interface MIDI IN terminal, and while in the FUNCTION mode the Fl6--SEQUENCE CONTROL function can be used to issue the corresponding commands.
(5) Playing an External Instrument via the DXI

Another MIDI compatible instrument can be "remote controlled" from the DXI.
*Main Signal Contents

* Transmission: BASIC EVENT DATA, OTHER EVENT DATA
*Connection and Operating Procedure
(a) Connect the DXI MIDI OUT terminal to the receiving instrument MIDI IN terminal.
* If it is desired to simultaneously control other instruments as well, connect as follows:
Transmitting keyboard MIDI OUT \Rightarrow Receiving Instrument 1 MIDI IN. Receiving Instrument 1 MIDI THRU \Rightarrow Receiving Instrument 2 MIDI IN, etc.
(b) Switch the DXI to the FUNCTION mode, and set Fl5 MIDI SWITCH ON.
(c) Turn the Fl5--SET STATUS--BASIC EVENT DATA and OTHER EVENT DATA ON, permitti transmission of BASIC EVENT DATA and OTHER EVENT DATA from the DXI.
* Match the reception channel of the receiving instrument with the transmission channel of the DXI.
* The F2--SOURCE SELECT function sets the DXI reception channel. The transmission channel is fixed at channel 1.
(d) Set the Fl5--SET STATUS--PROGRAM CHANGE MODE according to whether VOICE MEMORY or

Fig. 104. Control of Other MIDI Compatible Instruments via the DXI
BASIC EV. DATA BASIC EV. DATA
OTHER EV. DATA OTHER EV. DATA

bxi (trangmisalon)	Other MIDI compatible Instruent (recoption 1)	Other MIDI compatible 1nstruent (reception

PERFORMANCE MEMORY switching is to be performed.

* If the receiving instrument is not a DXI, PROGRAM CHANGE MODE must be set to VOICE.
(e) Set the DXI to the PLAY mode to prevent data errors.
(f) At this point, the receiving keyboard can be played from the DXI.
* The voice in the receiving keyboard selected by the transmitting keyboard PEOGRAM CHANGE function is played.
* If the receiving instrument is a DXI, DX7 or DX9, turn the F15--SET STATUS--SYSTEM EXCLU. COMMUNICATION mode ON, permitting editing of receiving instrument voice data from the transmitting DXI.
(6) Mutual Real-Time Control Between The DXI and Another DX Series Keyboard

This system permits the DXI and another DX series keyboard to be connected, and either keyboard can be controlled from the other. Transferrable data includes not only real-time performance data, but voice and performance femory parameter as well (fig. l05).
*Main Signal Contents

* Transmission: BASIC EVENT DATA, OTHER EVENT DATA, SYSTEM EXCLUSIVE DATA
* Reception: BASIC EVENT DATA, OTHER EVENT DATA, SYSTEM EXCLUSIVE DATA
*Connection and Operating Procedure.
(a) Connect the MIDI OUT terminal of keybaord 1 to the MIDI IN terminal of keyboard 2, and connect the MIDI OUT terminal of keyboard 2 to the MIDI IN terminal of keyboard 1.
(b) Swith to the FUNCTION mode and turn Fl5--MIDI SWITCH ON.
* If the other keyboard also has this function, perform the same operation on it.
(c) Using F15--SET STATUS, turn BASIC EVENT DATA OUTPUT, OTHER EVENT DATA OUTPUT and SYSTEM ECLU. COMMUNICATION ON.
* Perform the same operations on the other keyboard.
(d) To transfer voice or effect data between the keyboards, set the transmitting keyboard to the PLAY mode, then select the desired VOICE MEMORY or PERFORMANCE MEMORY while holding the DATA ENTRY YES button.
* The transmitted voice or effect data will

Fig. 105. Bi-diectional Real-time Control with 2 DX Units

be read into the corresponding VOICE EDIT BUFFER or PERFORNANCE EDIT BUFFER of the receiving keyboard.

* Effect data can only be received by another DXI.
* When INITIALIZE VOICE has been performed, the initialized voice data can be transmitted (It is not necessary to press DATA ENTRY YES). When the RECALL EDIT BUFFER function is performed, the data recalled from the VOICE EDIT BUFFER UTILITY can be transmitted (It is not necessary to press DATA ENTRY YES).
* To play a voice contained in the receiving instrument voice memory, select the voice or performance memory number without pressing the YES button. In this case, voice data in the VOICE EDIT BUFFER which was transferred from the transmitting instrument will be lost.
(e) To edit data, set the transmitting instrument to the EDIT mode, select the parameter to be edited and perform the edit process.
* The EDIT data is placed in the VOICE EDIT BUFFER.
(f) To edit performance data, switch the transmitting instrument to the FUNCTION mode, select the parameter to be edited and perform the edit process.
* Effect data can only be edited if the transmitting and receiving instruments are both DXIs.
* Only performance memory parameters can be transferred. MEMORY MANAGEMENT and MIDI INFO control data can not be altered (except for Fl5--OMNI MODE).
* A STORE operation must be performed to save data received via MIDI. Data transfer can not be accomplished in the STORE mode.
(7) Memory Data Transfer Between a DXI and Another DX Series Keyboard

All voice memory data can be transferred between a DX1 and another DXI, DX7 or DX9. Performance memory data can be transfered between two DXIs.

Fig. 106. Memory Data Transmission with 2 DX Units

SYSTEM EXCLU. DATA

SYSTEM EXCLU. DATA

*Main Signal Contents

* Transmission: SYSTEM EXCLUSIVE DATA
* Reception: SYSTEM EXCLUSIVE DATA
* Connection and Operating Procedure (DXI to other keyboard)
(a) Connect the MIDI OUT terminal of the DXI to the MIDI IN terminal of the second keyboard.
* To transfer data from the second DX keyboard to the DXI, connect the MIDI OUT terminal of the second keyboard to the MIDI IN terminal of the DXI.
(b) Switch to the FUNCTION mode.
* If the DXI is the receiving instrument, set any mode but STORE.
(c) Turn Fl5--MIDI SWITCH ON.
* Perform the same operation on the second keyboard.
(d) Using Fl5--SET STATUS, turn SYSTEM EXCLU. COMMUNICATION ON.
* Perform the same operation on the second keyboard.
(e) Turn the memory protect function of the receiving keyboard OFF.
* Memory protect is turned off using F14--PROTECT MEMORY WRITE.
(f) Using Fl5--TRANSMIT DATA, select the data to be transmitted, and begin the transmission.
* The DUMP ALL VOICE IN BANK A, B function sends all voice data, and the DUMP ALL PERFORMANCE function sends all performance data.
* The received data is loaded directly into the respective VOICE or PERFORMANCE MEMORY.
* Reception is not possible if the receiving instrument is set to the STORE mode.
* If the DXI receives data in the FUNCTION mode, the lower row of the display will read "MIDI Received bulk data through MIDI"。
* If the DXI receives data in the PLAY or EDIT modes, the upper row of the display will read "<<MIDI>>".

9-1 Approaching the FM Tone Generator

The basic signal source used in the Fr tone generator (the operator) produces a pure sine wave with absolutely no harmonics. By applying $F M$ modulation to this sine wave a complex harmonic spectrum can be produced. To get the most from this sophisticated system however, it is necessary for the musician or programmer to be able to "forecast" the approximate results of certain operation in order to be able to program a specific sound.

FI. Tone Generator Parameters

s described in Chapter 1 , the FM tone enerator produces voices according to the frequency ratio between the modulators and carriers, modulator level, feedback, and the configuration of the algorithm used.

* Modulator/Carrier Frequency Ratio (Harmonic Spectrum)

The frequency ratio between modulators and carriers is the most important element in voice programming. It determines the harmonic spectrum, waveform, and the basic sound. For example, if the carrier/modultor frequency ratio is set at l:l, the result is all integer harmonics, producing a triangle waveform. If l:2, a square waveform incorporating all odd harmionics is produced. A 1:3 ration results in a rectangular waveform with integer harmonics minus multiples of 3 .

* The modulator/carrier frequency ratio is set using the OSCILLATOR block COARSE and FINE parameters.

Hodulator Level: FA Depth
When modulator level is set to 0 , FM modulation is OFF. The carrier will produce an unmodulated sine wave. As the modulator level is increased, so does the depth of modulation and thus the number of harmonics. Generally, increasing the modulation level increases the brightness of the sound.

* Modulation level is set with the OPERATOR OUTPUT LEVEL parameter.
* Feedback

Feedback permits a carrier or modulator to modulate itself. When feedback is set to 0 no self-modulation is applied. As with modulator level, increasing feedback results in an increase in harmonic content and an increase in the brightness of the sound.

* Feedback level is set with the ALGORITHM block FEEDBACK parameter.

* Algorithm: Operator Configuration

The algorithm most suited to the target sound shoulc be selected from the 32 configurations provided, and then the modulator/carrier frequency ratio, modulation level and feedback level data set. The resultant voice will vary greatly according to the algorithm selected. In general, algorithms with a large number of vertically arranged modulators create "harder" voices, while algorithms with a larger number of horizontally aligned carriers produce softer, deeper timbres.

* The algorithm is selected using the ALGORITHM parameter.

The Modulator/Carrier Frequency Ratic and Harmonic Spectrum

The relationship between modulator/carrier frequency ratio is basically described in the following formula, where C is the carrier after modulation, fc is the carrier freguency before modulation, $f m$ is the modulator frequency, and n is an integer including $0(0,1,2,3,4, \ldots .$.$) .$
$C=|f c \pm n f m|$
$=|f c-f m|+|f c+f m|+|f c-2 f m|+|f c+2 f m|+\mid f c-3$

* This formula is not precise, but it is perhaps the easiest to understand.
* Let's see if by setting the modulator/carrier pitch ratio to l:l (fm=fc) we get a waveform cotaining all integer harmonics (triangle wave).
$\mathrm{C}=\mathrm{fc}+2 \mathrm{fc}+3 \mathrm{fc}+4 \mathrm{fc}+\ldots \ldots \ldots \ldots$.............................. 2
There it is, the integer harmonics are all there. Figure 8 is an example of this type of waveform (modulator level $=85$).
* Normally, this type of waveform is used as a basis for brass instrument or string instrument voices.
* Next, we'll set the modulator/carrier ratio to $1: 2(\mathrm{fm}=2 \mathrm{fc})$.
$\mathrm{C}=\mathrm{fc}+3 \mathrm{fc}+5 \mathrm{fc}+7 \mathrm{fc}+\cdots \cdots \cdots \ldots$ formula 3
The harmonics are all odd, and we get a square waveform. Figure 9 is an example of this type of waveform (modulator level $=85$).
* This type of waveform is normally used for woodwind voices.
* This time we'll try a ratio of $1: 3$ ($\mathrm{fm}=3 \mathrm{fc}$).
$\mathrm{C}=\mathrm{fc}+2 \mathrm{fc}+4 \mathrm{fc}+5 \mathrm{fc}+\cdots \cdots \cdots \cdots$.................................. 4

The result is integer harmonics, except for multiples of 3 , producing a rectangular
(pulse) waveform. Figure 10 is an example of this type of waveform (modulator level $=85$).

* This type of waveform is of ten used for wind and string instrument voices.
* If the modulator/carrier pitch ratic is set to $1: n$, a non-symmetrical rectangular waveform with a l:n duty cycle is produced.
* Now, let's try a ratic of 1:3.33
(fm=3.33fc)--a "fractional" ratio.
$\mathrm{C}=\mathrm{fc}+2.33 \mathrm{fc}+4.33 \mathrm{fc}+5.66 \mathrm{fc}+7.66 \mathrm{fc}+\cdots \cdots$ - formule 5
The harmonics are all fractions. This is one of the strongest points of the FM tone generator system. Virtually any harmonic spectrum can be produced. Figure 11 is an example of this type of waveform (modulator level = 85).

Fig. 107. Waveform Variation with Relative Pitch l.
$\mathrm{f} m=\mathrm{fc}$ (m . level=85)

Fig. 108. Waveform Variation with Relative Pitch 2
$\mathrm{fm}=2 \mathrm{fc}$ (m . level=85)

Fig. 109. Waveform Variation with Relative Pitch 3.
$\mathrm{fm}=3 \mathrm{fc}$ (m. level=85)

Fig. 110. Waveform Variation with Relative Pitch 4.
$\mathrm{fm}=3.33 \mathrm{fc}$ (m. level=85)

* By using a small fractional ratio like this, a large number of low-frequency harmonics are generated, resulting in metallic sound of indefinite pitch. The 1:3.33 ratio, for example, is ideal for generating bell sounds.
* Now let's try stacking two modulators, the top modulator modulating the second, then use the output from the lower
modulator to modulate a carrier (fig. 12). If we set the pitch ratic between Ml and M2 at l:l, the output from H 2 will be:
$M_{2}=f m+2 f m+3 f m+4 f m+$

formula 6

Fig. 111. Modulator Second Level Algorithm (stacked vertically)

Modulator Signal § Audio Signal

* If the ratio between $M 2$ and C is also set at l:l, we still end up with all integer harmonics, but the level of the harmonics will be higher resulting in a brighter timbre.
* If the ratio between the M 2 modulator and carrier frequencies is shifted just slightly, a uniform but random harmom spectrum will be produced throughout the frequency range, producing a white-noise type sound.

Waveform Variation Due to Modulator Level

* While carrier level determines the volume of the sound, modulator level determines the strength of the modulation, and thus the level of the harmonics produced. Formula 7, below, describes the effect of modulation level. C is the actual output after modulation, fc is the fundamental frequency of the carrier before modulation, f2--fn are the harmonics, and Am is the modulation level $(0<=A M<=99,99$ IS MAXIMUM operator output level).
$\mathrm{C}=\mathrm{fc}+\mathrm{Am} / 99\left(\mathrm{f}_{2}+\mathrm{f}_{3}+\mathrm{f}_{4}+\cdots \cdots \cdots \cdots+\mathrm{f}_{\mathrm{n}}\right)$ - formula 7
* This formula is not precise, but it clearly demonstrates the way the level of the harmonics increase with increased modulation level.
* Figures $13--17$ show how the output waveform changes as modulator level is increased with a modulator/carrier ratio of $1: 1$. The waveform increases in complexity as the modulator level is increased.
* A modulator level between 70--90 is generally fine to produce basic
triangular or rectangular waveforms.
* For fractional frequency ratios, the pitch of the resultant sound becomes less defined as modulator level is increased.

Harmonic Spectrum Variation Due to Feedback
Using feedback, an operator can be made to modulate itself with its own output (fig. 18). In other words, a single operator can function as modulator and as a carrier at the same time. Of course, the modulation frequency ratio is always $1: 1$.

[^0]to a carrier while some permit application of feedback to a modulator. Whether applied to a modulator or carrier, the result is equivalent to an infinite stack of modulators all set to a l:1 frequency ratio (fig. lll).

Fig. 112. Waveform Variation with Modulator Level 1 .
m. level=0
(Sine wave $f m=f c$)

Fig. 1l3. Waveform Variation with Modulator Level 2.
m. level=65 (fm=fc)

Fig. 114. Waveform Variation with Modulator Level 3.
m. level $=75$ ($\mathrm{fm=fc}$)

Fig. 115. Waveform Variation with Modulator Level 4.
m. level=85 ($\mathrm{fm=fc}$)

Fig. 116. Waveform Variation with Modulator Level 5 .
m. level=99 ($f \mathrm{~m}=\mathrm{fc}$)

Algorithm Selection
Basically, any algorithm can be used for voice programming, but some are more suited to the creation of certain types of voices than others. The 32 available algorithm configurations are printed to the left of the DXI LED display. They can be broadly categorized by the number of carriers they use.

* 1 or 2 Carriers (ALGORITHM l--4, 7--18)

With only 1 or 2 carriers, and the rest of the operators function as modulators, the hardest, brightest voices can be produced, and the greates timbre variation based on the EG curve is possible. This type of configuration is also the easiest to create "noise" voices with. Generally, this is the best for solo instrument voices. Lower modulator level settings make it possible to create piano-like waveforms.

* 3 Carriers (ALGORITHH 5, 6, 19, 20, 26--28)

With 3 carriers, it is possible to program each to produce a "portion" of the target voice, and then mix them in the right proportin to create the finished voice. It is also possible to detune the pitch of the carriers for a chorus effect. Since 3 modulators are also available, extremely fine control is possible. Basically, this configuration makes it the easiest to predict the outcome, and offers the broadest voice creation possibilities.

* 4--6 Carriers (ALGORITHM 21--25, 29--32)

A larger number of carriers and fewer modulators makes it possible to create particularly full, rich voices. If feedback is applied, however, hard, brittle voices can also be produced. Extremely thich chorus effects can be produced by detuning the pitch of all the carriers. This is ideal for creating organ coupler effects.

9-2 FM Tone Generator Theory

In this section we'll describe the theoretical aspects of $F M$ tone generation, using the appropriate formulae.

Sine Wave Memory

* The FM tone generators consist of a sine wave memory (SWM). The sine wave memory receives digital pitch data as input, and outputs a sine wave of the corresponding pitch, formed of a number of cigital values stored in memory (fig. 118).
* For example, if input 0 is gived, then the output of the SWM, y, is

$$
y=\sin \theta, \quad(0 \leqq \theta<2 \pi) \quad \text { formula } 8
$$

Fig. 118. Sine Wave Memory

* To produce a time based variation, let us assume that 0 varies linearly $0=w t$ (fig. ll9a), w is the angular velocity, and t is time, this gives:
$y=\sin \omega t \quad$ (fig. 119b)
-_.. formule 9

The output of the sine wave memory is a pure sine wave.

Basic FM Tone Generator Formulae

```
If the speed of 0 is then doubled 0 = 2
wt (fig l20a), then:
```

$y=\sin 2 \omega t$ _ formule 10
Note that the waveform produced by formula 10 has twice the frequency of that produced by formula 9 .

* Now if 0 varies as a sine wave rather than linearly $(0=w t+\sin w t: f i g$. l2la) we get (formula 11, fig l21b):
$y=\sin (\omega t+\sin \omega t)$ formula 11
The result is a waveform quite different from the original. If the input to the operator varies--such as a sine wave-the result is that we are applying frequency modulation (FM) to the operator. In formula ll, $y=$ sin wt is an operator used as a carrier and modulator, to which FM is applied.
* Now, what happens if the modulator frequency is doubled ($0=w t+\sin 2 w t$): $y=\sin (\omega t+\sin 2 \omega t)$
formula 12
A completely different waveform is produced. If the angular velocity of the

Fig. 119. $y=\sin \omega t$

Fig. $120 . \quad y=\sin 2 \omega t$
a.
b.

modulator is varied in relation to the carrier, a broad range of waveforms can be produced.

* Taking formula 11 and 12 into account, we can create a formula which defines all FN modulation:
$y=\sin (\omega c t+\sin \omega t)$ formula 13
wc is the carrier angular velocity, and wm is modulator angular velocity.
* In the DXI, however, it is the pitch ratio between the modulator and carrier that is controlled, not angular velocity. wc is expressed in terms of carrier pitch as (wc $=2$ pi $f c$), and $w m$ is expressed in terms of modulator pitch as (wm $=2 \mathrm{pi}$ fm):
$y=\sin (2 \pi f c t+\sin 2 \pi f m t) \quad$ formula 14
* The formula is still not complete. Formula 14 represents the modulator and carrier as both having level l. In fact carrier level is used to control volum while modulator level is used to contror timbre, so these two elements must be added. Carrier level will be expressed as Ac, and modulator level will be expressed as Am:
$y=A c \sin (2 \pi f c t+A m \sin 2 \pi f m t)$
formula 15
This is the basic FM tone generator formula. It permits representation of 1 modulator and 1 carrier in an $F M$ tone generator system.

How the FM Tone Generator Produces Rich Harmonic Structures

Fig. 12l. $y=\sin (\omega t+\sin \omega t)$
a.

Fig. 121. $y=\sin (\omega t+\sin 2 \omega t)$
a.


```
        * Let's look at how the FM tone generator
            can produce complex harmonic structures
            in terms of the formula. Using the
            formula sin (A + B) = sin A cos B + cos A
            sin B, we'll modify formula l5:
y=Ac{\operatorname{sin}2\pifct \operatorname{cos (Am sin 2\pifmt) +}
            \operatorname{cos}2\pi\textrm{fct}\operatorname{sin}(\textrm{Am}\operatorname{sin}2\pi\textrm{fmt})} -_____formula 16
            * Then if we use the Bessel function to
            modify the underlined portions of formula
            16, we get formula 17. The Bessel
                        function In becomes the modulator level
        function J (Am).
y=Ac{J J Sin 2\pifct +
            2J|}\operatorname{cos}2\pifct \operatorname{sin}(1\cdot2\pifmt) +
            2J 
            2J3 cos 2\pifct sin (3. 2\pifmt) +
            2J J }\operatorname{sin}2\pi\textrm{fct}\operatorname{cos}(4\cdot2\pifmt)
        * We then use the triangular function
        2 cos A sin B = sin (A + B) - sin (A - B)
        2 sin A sin B = sin (A + B) + sin (A - B)
        to modify formula l7 further:
y=Ac ( }\mp@subsup{J}{0}{}\operatorname{sin}2\pifct
        J
                sin 2\pi(fc-fm) t } +
        J2 { sin 2\pi (fc+2fm) t -
            sin}2\pi(fc-2fm)t}
        J3 {\operatorname{sin}2\pi(fc+3fm) t -
        \operatorname{sin}2\pi(\underline{fc-3fm) t} +}
        J4 { \operatorname{sin}2\pi(\underline{fc+4fm) t -}
            \operatorname{sin}2\pi(fc-4fm) t} +
```

 ..)
 ———_ formule 18
 Now things get easier. Look at the underlined portions of formula 18. In addition to the original carrier frequency fc, we now have an infinite string of harmonics
$|f c+f m|,|f c-f m|,|f c+2 f m|, \mid f c-2$
nl, etc.

* It is clear that the frequency of the hamonics is determined by the frequency of the modulator (fm) and that of the carrier (fc).
* The level of each harmonic is determined by the Bessel function Jn, but actually the Bessel function value is the modulator level function Am. The modulator level (Am) determines the level of the harmonics, and therefore the brightness of the sound.
* Let's tke a look at the harmonic spectrum produced by a modulator/carrier pitch ratio of $1: 1$ ($\mathrm{fc}=\mathrm{fm}$).

$$
\begin{array}{r}
\mathbf{y}=A c\left(\begin{array}{l}
\left(J_{0}-J_{2}\right)
\end{array} \sin (\underline{1} \cdot 2 \pi f c t)+\right. \\
\left(J_{1}+J_{3}\right) \sin (\underline{2} \cdot 2 \pi f c t)+ \\
\left(J_{2}-J_{4}\right) \sin (\underline{3} \cdot 2 \pi f c t)+ \\
\left(J_{3}+J_{5}\right) \sin (\underline{4} \cdot 2 \pi f c t)+
\end{array}
$$

\}

Looking at the underlined portions of forumula 19, we can see that all the integer harmonics are included. Such all-integer harmonic structure results in a triangular waveform.

```
    * Next, the modulator/carrier pitch ratio
        is 1:2 (2fc = fm):
\(y=A c\left\{\left(J_{0}+J_{1}\right) \sin (1 \cdot 2 \pi \mathrm{fct})+\right.\)
        \(\left(J_{1}-J_{2}\right) \sin (\underline{3} \cdot 2 \pi\) fct \()+\)
        \(\left(J_{2}+J_{3}\right) \sin (\underline{5} \cdot 2 \pi f c t)+\)
        \(\left(J_{3}+J_{4}\right) \sin (7 \cdot 2 \pi f c t)+\)
```

Obviously, we have all odd-numbered harmonics, producing a square wave.

* Now let's try a ratio of $1: 3$ ($3 \mathrm{fc}=\mathrm{fm}$):
$y=A c\left\{\left(J_{0}+J_{1}\right) \sin (\underline{1} \cdot 2 \pi f c t)+\right.$
$\left(J_{1}-J_{2}\right) \sin (\underline{2} \cdot 2 \pi f c t)+$
$\left(J_{2}+J_{3}\right) \sin (4 \cdot 2 \pi f c t)+$
$\left(J_{3}+J_{4}\right) \sin (5 \cdot 2 \pi f c t)+$
\} —___ formula 21
Clearly, we have all integer harmonics except those numbers which are multiples of 3 . This is a rectangular waveform with a 1:3 duty cycle.
* As we have seen, it is also possible to set up a non-integer frequency ratio, such as 1:3.33. In this case $|\mathrm{fc}+\mathrm{fm}|=$ 4.33, $|\mathrm{fc}-\mathrm{fm}|=2.33$, $|\mathrm{fc}+2 \mathrm{fm}|=$ 7.66, |fc $-2 \mathrm{fm} \mid=5.66$, etc. The result is a complex, random harmonic spectrum.
$y=A c\left(\left(J_{0}+J_{1}\right) \sin (1.00 \cdot 2 \pi f c t)+\right.$
$\left(J_{1}-J_{2}\right) \sin (2.33 \cdot 2 \pi f c t)+$
$\left(J_{2}+J_{3}\right) \sin (4.33 \cdot 2 \pi f c t)+$
$\left(J_{3}+J_{4}\right) \sin (5.66 \cdot 2 \pi f c t)+$

Index

[^1]
GENERAL SPECIFICATIONS

- Kevboard
$\diamond 73 K E Y$ E0 ~E6 (Wooden weiqhted kevboard)
\triangle TOUCH CONTROL : KEY VELOCITY, AFTER TOUCH
- Sound Source
$\triangle F M$ TONE GENARATOR (6 OPERATOR $\times A-B$)
- Simultaneous Note Outrut \triangle POLYPHONIC: SINGLE 32/DUAL $16 /$ SPLIT $16+16$ \triangle MONOPHONIC: SINGLE $1 /$ DUAL $1 /$ SPLIT $1+1$
- Internal Voice Memorv \bigcirc VOICE MEMORY: 4 BANK $\times 8$ VOICE $\times A-B$ \diamond PERFORMANCE MEMORY: 8 BANK $\times 8$ PERFORMANCE
- Controls

OVOLUME : VOLUME SLIDER, BALANCE SLIDER, PHONES VOLUME \triangle EFFECT CONTROLLER : PORTAYENTO TIME SLIDER, PITCH BEND WHEEL, MODULATITON WHEEL
\triangle DATA ENTRY: DATA ENTRY SLIDER, $+/-$ SW,
OMEMORY\&PARAMETER SELECT : EDIT PARAMETER (ALCORITHM,
OPERATOR), VOICE MEMORY, PERFORMANCE MEMORY/FUNCTION, CARTRIDGE A-B
\triangle KEY ASSIGN MODE : SINGLE, DUAL, SPLIT
\checkmark MODE SELECTOR : EDIT / COPPARE, FUNCTION, STORE
$\diamond O T H E R$: OPERATOR SELECT, OPERATOR ON/OFF, DISPLAY SELECT (EG/PITCH EC)

- Disrlay
$\diamond L E D$ GRAPHIC DISPLAY : EDIT PARAMETER $=$ ALGORITHM, OPERATOR
OLC DISPLAY: EDIT PARAMETER=LFO etc/FINCTION PARAMETER
-Connection Terminals/Interface
©AUDIO OUTPUT : OUTPUT A-B-P (PHONE JACK, XLR TYPE balanced) , PHONES (STEREO PHONE JACK $8 \sim 150 \Omega$)
$\triangle C O N T R O L$ JACK : MODULATION, VOLLME, SUSTAIN ON/OFF,
PORTAMENTO ON/OFF
©INTERFACE : MIDI IN-OUT-THRU, CARTRIDGE INSERT A-B
- Edit Parameters
\div ALCORITHM
$\triangle A L C O R I T H M, ~ F E E D B A C K$
- OPERATOR
\triangle OSCILLATOR: MODE, DETUNE, COARSE, FINE
\diamond ENVELOPE GENERATOR: EG (RI~R4, LI $\sim L 4)$, PITCH EG (R1~R4. $\mathrm{LI} \sim(4)$
©KEYBOARD SCALING: LEVEL SCALING (LEFT DEPTH, LEFT CURVE,
BREAK POINT, RIGHT CURVE, RIGHT DEPTH) , RATE SCALING
\bigcirc SENSITIVITY : KEY VELOCITY. AMPL. MODULATION
$\diamond O P E R A T O R$ OUTPUT LEVEL
- LFO

OWAVE, SPEED, DELAY, PMD, PMS, AMD, KEY SYNC
茨OTHER
\diamond OSCILLTOR KEY SYNC, TRANSPOSE, VOICE NAME

- Function Parameters

ثyASTER TUNE
$\triangle F 1$: MASTER TUNE

- PPERFORMANCE MEMORY PARAMETER/FUNCTION CONTROL
$\diamond F 1$: DUAL MODE DETUNE
$\triangle F 2$: POLY/MONO, SOURCE SELECT
\diamond F3: PITCH BEND (RANGE, STEP)
$\diamond F 4$: PORTAMENTO (PORTAMENTO/GLISSANDO, RETAIN/FOLLOW.
PEDAL ASSIGN, TIME)
$\diamond F 5$: OUTPUT LEVEL ATTENUATE, PROG. OUT ASSIGN. SUSTAIN PEDAL
ASSIGN
©FG: MOD. WHEEL (SENSITIVITY, ASSIGN), FOOT CONT.
(SENSITIVITY, ASSIGN)
$\diamond F 7$: BRTH CONT. (SENSITIVITY, ASSIGN) , AFTER TOUCH (SENSITIVITY, ASSIGN)
$\diamond F 8:$ SPLIT POINT, KEY SHIFT, PERFORMANCE NAME
三
$\diamond F 9:$ TOTAL SENSITIVITY, DECAY RATE, RELEASE RATE
$\diamond F 10$: OP 1 DEPTH, OP 2 DEPTH, OP 3 DEPTH
\checkmark F11 : OP 4 DEPTH, OP 5 DEPTH, OP 6 DEPTH
- MEMORY MANAGEMENT
$\triangle F 12$: COPY OP DATA (ENVELOPE DATA, OSCILLATOR DATA), SAVE TEMP OPERATOR, INITIALIZE MEMORY (INITIALIZE VOICE, INITIALIZE PERFORMANCE) , RECALL FDIT BUFF
\triangle F13 : SAVE TO CARTRIDGE (ALL VOICE A, ALL VOICE B, ALL
PERFORMANCE) , LOAD FROM CARTRIDGE (ALL VOICE A, ALL VOICE B,
ALL PERFORMANCE) , CHANGE CART FORMAT
\diamond F14 : PROTECT MEMORY WRITE, CLEAR ALL MEMORY, CHECK BATTERY
MIUI INFURMATION CONTROL
$\diamond F 15$: MIDI SWITCH, SET STATUS (BASIC EVENT DATA OUTPUT,
OTHER EVENT DATA OUTPUT, SYSTEM EXCLU. COMMNICATION, OXNI
MODE, PROGRAM CHANGE MODE) , TRANSMIT DATA (DUMP ALL VOICE
IN A, DUMP ALL VOICE IN B, DUMP ALL PERFORMANCE)
\diamond F16 : REMOTE SFQUENCE
- Finish
\diamond Side Panelling: Brazilian Rose
\diamond Control Panel: Light Metallic Brown
- Dimensions/Meight
\diamond Dimensions: $1255 \mathrm{~W} \times 225 \mathrm{H} \times 640 \mathrm{D} \mathrm{mm}\left(55^{n} \times 9^{n} \times 25^{n}\right)$
\diamond Weight: 51 kg (112.2 1bs)
- Power $=100 \mathrm{~V}$
\bullet POWER REQUIREMENTS
U.S. \& Canadian Models: $120 \mathrm{~V}, 60 \mathrm{~Hz}$

General Models: 110--120/220--240V, $50 / 60 \mathrm{~Hz}$

- Sunplied Accessories
\diamond FOOT SW FC- 4×2
\checkmark FOOT CONTROLLER FC- $3 A \times 2$
\diamond BREATH CONTROLLER BC -1×1
\bigcirc MUSIC STAND
\diamond POWER CABLE
\diamond ROM VOICE MEMORY CARTRIDCE $\times 4$
\bigcirc ROM PERFORMANCE MEMORY CARTRIDGE $\times 1$
\diamond RAM 1 DATA CARTRIDGE $x 3$ (for U.S. Models only)
※Specifications subject to change without notice.

VOICE LIBRARY
with
PERFORMANCE NOTES

PERFORMANCES \& VOICES

I. BRASS GROUP

No.	Performance Name	Voice Name A	Voice Name B	Performance Note
$1-1$	Double Horn Section (Detuned)	Horn Sec. A	Horn Sec. B	Vary brilliance with velocity of touch and after touch.
$1-2$	Fanfare Trumpets	Trumpet A	Trumpet B	Vary brilliance and volume with attack. Add vibrato with Mod. Wheel.
$1-3$	Full Synth Brass (Detuned)	Syn Brs 1A	Syn Brs 1B	Vary brilliance with attack. Use after touch to add brilliance and vibrato.
$1-4$	Tight Brass Section	Tight Br. A	Tight Br. B	Brass in octaves. Add Mod. Wheel for vibrato. Play full chords for section effect.
$1-5$	Synth Brass [After Touch]	Syn Brs 2A	Syn Brs 2B	Use after touch for " "filter sweep" effect.
$1-6$	Synth Brass [F/C Chorus]	Syn Brs 3A	Syn Brs 3B	Plug in FC-3A foot controllter to MODULATION jack on rear panel, and use it for chorus-like effect. Mod. wheel can be used for same effect.
$1-7$	CS80 Brass [F/C Vibrato]	CS80 Brs A	CS80 Brs B	Use FC-3A or Mod. wheel for vibrato.
$1-8$	Strings \& Brass Ensemble [A/T]	Bright St.	Brass	Complex sound. Use after touch to vary volume.

II. STRINGS GROUP

No.	Performance Name	Voice Name A	Voice Name B	Performance Note
2-1	Cello Quartet	Cellos 1A	Cellos B	Vary "bowing" with speed of attack. Add vibrato with after touch and Mod. Wheel. Transpose up or down a fifth with Pitch Wheel.
2-2	Violin Ensemble	Violins A	Violins 1B	Vary "bowing" with attack. Add vibrato with after touch and Mod. Wheel. Use Pitch Wheel up or down to transpose one side up a fifth.
2-3	Ensemble [L]/Solo Violin [R]	St. Ens. 1 A	Soloviolin	Split at G above middle C . Use portamento slider for glide on solo violin. Articulate solo violin bowing with velocity of touch and add vibrato with after touch.
2-4	String Orchestra	Mid. Strg A	Mid. Strg B	Vary brilliance and vibrato with after touch. Additional vibrato via Mod. Wheel. Especially nice for full rich string sections in lower octaves.
2-5	High Strings (Analog Type)	An. $\operatorname{Strg} \mathrm{A}$	An. Strg B	Use after touch to bring out individual notes. Add vibrato with after touch and/or Mod. Wheel. Great for high single line strings.
2-6	Cellos \& Violins	Cellos 2A	Violins 2B	Violins fade in at approx. middle C in octaves with cellos. Use after touch and Mod. Wheel for vibrato.
2-7	String Ensemble [F/C vibrato]	St. Ens. 2A	St. Ens. B	Use FC-3A or Mod. wheel for vibrato.
2-8	Strings \& Velocity Trumpets	Strings A	Trumpet B	Bring in brass sections with attack/velocity of touch. Add vibrato via after touch and Mod. Wheel.

III. KEYBOARD \& PERCUSSIVE GROUP

No.	Performance Name	Voice Name A	Voice Name B	Performance Note
3-1	Acoustic Grand Piano 1	Piano 1A	Piano 1B	Vary brilliance and volume with attack.
3-2	Acoustic Grand Piano 2	Piano 2A	Piano 2B	Vary brilliance and volume with attack.
3-3	Electric Grand Piano	Elec Grd A	Elec Grd B	Vary brilliance and volume with attack.
3-4	Electric Piano [M/ W Tremolo]	E. Piano 1A	E. Piano 1B	Move Modulation Wheel to Max. for stereo vibrato.
3-5	Electric Piano (Bright Tine)	E. Piano 2A	E. Piano 2B	Vary brilliance with attack. Add Mod. Wheel for slight chorus effect.
3-6	Dirty Electric Piano	E. Piano 3A	E. Piano 3B	Vary attack for "over-driven tine" attack. Add Mod. Wheel for stereo vibrato effect.
3-7	Clav. Ensemble	Clav. A	Clav. 1B	Vary brilliance and volume with attack. Add Mod. Wheel for vibrato.
3-8	Grand Harpsichord	Harpsi. 1A	Harpsi. B	Normal.
4-1	Pipe Organ [F/C Vibrato]	Pipes A	Pipes B	Use FC-3A or Mod. wheel for vibrato.
4-2	Jazz Organ [F/C Tremolo]	E. Organ 1A	E. Organ 1B	Use FC-3A or Mod. wheel for tremolo effect.
4-3	Rock Organ with Old Tone Cab	E. Organ 2A	E. Organ 2B	Vary attack for distortion. Add Mod. Wheel for slow rotating speaker effect.
4-4	E. Piano [L]/Jazz Guitar [R]	E. Piano 4A	Jazz Guitar	Split at middle C. Add vibrato to guitar via Mod. Wheel. Increase "plucking" of guitar with velocity touch.
4-5	Elec. Bass [L]/E. Piano [R]	Elec. Bass	E. Piano 4B	Split at Middle C. Pitch Bend Wheel is assigned to bass. "Slap bass strings" with velocity touch on left, increase dynamics of elec. piano with velocity touch on right.
4-6	Double Harps	Dbl. Harp A	Dbl. Harp B	Delayed stereo envelope effect. Increase "plucking" with velocity touch. Add vibrato via Mod. Wheel.
4-7	African Mallets	A. Mallet A	A. Mallet B	Vary brilliance and volume with attack. Use after touch to bring out odd harmonics.
4-8	Vibraphone	Vibes A	Vibes B	Vary "strike of mallet" with velocity touch. Add soft vibrato via Mod. Wheel. Use sustain pedal to suit taste.

IV. COMPLEX GROUP

No.	Performance Name	Voice Name A	Voice Name B	Performance Note
5-1	Electric Piano \& Brass [BC1]	E.P. \& BrA	E.P. \& Br B	Plug in BC 1 breath controller to jack on lower left front. Activate brass over the piano by blowing into BC1. Add vibrato to brass with after touch.
5-2	Electric Grand \& Brass [BC1]	E. Grd \& $\mathrm{Br} A$	E. Grd \& Br B	same as above.
5-3	Electric Piano \& Sax [BC1]	E. Piano 5A	Sax [BC1]	same as above.
5-4	Elec. Piano \& Clav Ensemble	E. Piano 6A	Clav. 2B	Vary volume and brilliance of Clav. with velocity of touch. Add vibrato with Mod. Wheel. Bring out additional harmonics with after touch.
5-5	Electric Piano \& Strings	E. Piano 7A	Strings 1B	Add tremolo to piano and vibrato to strings with Mod. Wheel. Adjust balance slider to suit taste.
5-6	Harpsichord \& String Ensemble	Harpsi. 2A	Strings 2B	Add vibrato to strings with Mod. Wheel. Adjust balance slider to suit taste.
5-7	Full Örchestra	Orchestra	Orch. Chime	Full chords in octaves work best. Use after touch for brilliance/" filter sweep" effect. Add vibrato to "orchestra" via Mod. Wheel. Fast staccato attack brings in bells.
5-8	Ride Cymbal \& Fretless Bass	Fretles 1A	R. Cymbal	When notes are held, cymbal is "stopped". Quick attack/release of key lets cymbal "ring". Bass is in mono mode to allow for legato fingered portamento.

V. SPLIT GROUP

No.	Performance Name	Voice Name A	Voice Name B	Performance Note
6-1	Kick Drum [L]/Snare [R]	Kick Drum	Snare	Split at middle C. Increase dynamics with velocity touch.
6-2	Hi-Hat (Closing) [L]/Cymbal [R]	Cl. Hi-Hat	Cymbal	Split at middle C. Down keystroke "opens" hit-hat, release of key "closes". Cymbal is velocity sensitive. Hold key to "stop" cymbal, release of key allows cymbal to "ring".
6-3	Hand Claps [L]/Tom Toms [R]	Hand Claps	Tom Toms	Split at middle C. Play fast rolled group of notes left for "claps". Toms on right are velocitry sensitive.
6-4	Log Drums [L]/Roto Toms [$\overline{\mathrm{R}}$]	Log Drums	Roto Toms	Same as above.
6-5	Tombourine [L]/Timbali [R]	Tambourine	Timbali	Split at middle C. Play quick single notes left for tambourine. Timbalis on right are velocity sensitive.
6-6	Cowbell [L] Wood Block [R]	Cowbell	Wood Block	Split E below middle C. Play single "hits" left and "selected" blocks right.
6-7	Fretless Bass [L] /Sax [BC1] [R]	Fretles 2A	Sax [BC1]	Split at A below middle C. Bass on left is mono for fingered portamento. Sax is controlled with the BC1 "mouthpiece" (Plug in on lower left front). Add vibrato to Sax via after touch.
6-8	Acoustic Piano [L]/Flute [R]	Piano 1A	Flute	Split at G above middle C. Piano is velocity sensitive. Add harmonics to Flute with after touch pressure.

VI. SYNTH GROUP

No.	Performance Name	Voice Name A	Voice Name B	Performance Note
7-1	Synthesizer Uprising	Syn-Rise A	Syn-Rise B	Hold full chord for best effect.
7-2	Sample \& Hold [L]/Lead Line [R]	Sample \& HId	Lead Line	Split at F above middle C. Hold chord in left for sample/hold - play mono fingered portamento leadlines in right. Vary attack and after touch on leadline for modulation. Additional modulation and pitch bend on wheels.
7-3	Poly Synth [L]/Lead Synth [R]	Poly Synth	Lead Synth	Split at c above middle C to allow for chords in left hand. All other parameters same as above.
7-4	Percussive Synth [After Touch]	Perc. Syn. A	Perc. Syn. B	Very expressive by using velocity and after touch.
7-5	Toy Music Box	Music B×A	Music Bx B	Normal
7-6	FM Ensemble	EM Ens. A	FM Ens. B	Vary brilliance with attack. Hold down a group of notes or hold sustain pedal for "ensemble" to fade in.
7-7	Planet of Ice	Plan. Ice A	Plan. Ice B	Hold chords for delayed envelopes to occur. Add vibrato via Mod. Wheel.
7-8	Male \& Female Choir	F. Choir	M. Choir	Add vibrato with Mod. Wheel. Articulate voices with individual after touch. Adjust balance slider to suit taste.

VII. EFFECTS GROUP

No.	Performance Name	Voice Name A	Voice Name B	Performance Note
$8-1$	"Big Ben" [L]/Tuned Bells [R]	Big Ben	Tuned Bell	Split at G2.
$8-2$	Glass Wind Chimes	Glass WC A	Glass WC B	Arpeggiate several notes randomly. Note random stereo effect.
$8-3$	Jungle Noise (Growl/Birds)	Growl	Birds	Split at middle C. Lighty depress low key on left - push for "growl - Select random keys on right for "birds".
$8-4$	Side to Side	Two Four	One Three	Roll chords for random stereo effect. Add vibrato via Mod. Wheel. Try building up notes with sustain pedal depressed.
$8-5$	Traffic	Traffic A	Traffic B	Split at middle C. Left side for exhaust notes and horns, right side for whistles and another horns.
$8-6$	Floating Clouds	Fl. Cloud A	Fl. Cloud B	Pitch bend assigned to one side only. Try holding chords and slightly bending pitch for effects.
$8-7$	Combat (Explosion [L]/Guns [R]	Explosion	Machinegun	Hit any group of low keys for "bombs" random keys on right for "machine guns".
$8-8$	Bombs Away !!	Bomb Drop A	Bomb Drop B	Hold any group of keys and wait for "bombs" to explode.

While the following statements are provided to comply vith FCC Regulations in the United states, the corrective measures liated below are applicable worldwide.

This teries of Yamaha combo keyboards uses frequencies that appear in the radio frequency range and if installed in the imediate proximity of some types of audio or video devices (within three meters), interference may occur.
This series of yamaha combo keyboards has been type tested and found to comply with the specifications set for a class s computing device in accordance with those epecifications listed in subpart J of part 15 of the FCC rules. These rules are designed to provide a reasonable measure of protection against such interference. However, this does not guarantee that interference will not occur. If your combo keyboards should be suspected of causing interference with other electronic devices, verification can be made by turning your combo keyboards off and on. If the interference continues when your keyboardis off, the keyboard is not the source of interference. If your keyboard does appear to be the source of the interference, you should try to correct the gituation by using one or more of the following measures:

Relocate elther the keyboard or the electronic device that is being affected by the interference.

Utilize power outlets for the combo keyboard and the device being affected that are on different branch (circuit breaker or fuse) circuits, or install AC line filters.

In the case or radio or $T V$ interference, relocate the antenna or, if the antenna leado-in is 300 ohm ribbon lead, change the lead to co-axial type cable.

If these corrective seasures do not produce satisfactory results, please contact your franchised Yamaha combo keyboard dealer for suggeations and/or corrective measures. If you can not locate franchlsed Yasaha combo keyboard dealer in your general area contact the combo service Department, Yamaha International, 6600 Orangethorpe Ave., Buena Park, CA 90620.

If for any reason, you should need additional information relating to radio or TV interfecence, you may find a booklet prepared by the Federal Commanications Comission helpfulz "Bow to Identify and Resolve Radio -- TV Interference Problems". Tnis booklet is available from the U.S. Goverment Printing Office, Washington D.C. 20402--Stock

[^0]: * In the 32 algorithms available in the DXI, some permit application of feedback

[^1]: $0=2 w t(f i g 120 a), 7$
 $0=w t$ (fig. ll9a), w is the angular velocity, and t is time, 6

